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1 In Eq. (1) we adopt the convention
that empty products are 1, so that
∏i∈S fi = 1 for S = ∅.

The sos algorithm over general domains

So far our focus has been on the task of optimizing some n-variate
polynomial f over the Boolean cube. But the sos algorithm is applica-
ble in a much more general setting. In particular, we can replace the
Boolean cube with any set Ω ⊆ Rn that is defined by polynomial in-
equalities. This is important to capture computational problems that
go beyond those that we have considered so far. We now make the
appropriate general definitions of sos proofs, pseudo-distributions,
and state the more general theorem regarding the sos algorithm.

It turns out that in the most general setting some issues arise that
do not come up for the hypercube. So far these issues seem to be
pathological in the sense that one can construct bad examples but
they don’t play a role when designing algorithms based on sum-of-
squares. We will highlight an important special case that avoids those
issues altogether and still significantly generalizes the hypercube.

General sum-of-squares proofs

Let R[x] be the ring of polynomials with real coefficients in variables
x = (x1, . . . , xn). Let A = { f1 ≥ 0, . . . , fm ≥ 0} be a system of
polynomial constraints with f1, . . . , fm ∈ R[x]. We will be interested in
two kinds of problems related to A:

• decide if A has a solution or if it is infeasible,

• given a polynomial g ∈ R[x], decide if g is nonnegative over the
set of solutions to A.

We say that a polynomial p ∈ R[x] is sum-of-squares (sos) if there
are polynomials q1, . . . , qr ∈ R[x] such that p = q2

1 + · · ·+ q2
r .s

1. Definition (Sum-of-squares proof). A sum-of-squares (sos) proof
that the system of polynomial constraints A implies the constraint
{g ≥ 0} consists of sum-of-squares polynomials (pS)S⊆[m] in R[x]
such that1

g = ∑
S⊆[m]

pS ·∏
i∈S

fi . (1)

We say that this proof has degree at most ` if each summand has
degree at most `, i.e., every set S ⊆ [m] satisfies deg(pS ·Πi∈ fi

) ≤ `. If
there exists such a proof of degree at most `, we write

A `` {g ≥ 0} . (2)
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2 This convention is useful when the
functions f1, . . . , fm and g involve
variables besides the “proof variables”.
The distinction is important sometimes
because non-proof variables do not
count toward the degree of the proof
and are treated as constants.

The identity Eq. (1) implies that g is nonnegative for every point
x that satisfies the system A because each summand on the right-
hand side is nonnegative. Given A, g, and sos polynomials (pS)S⊆[m]

(together with their sos representations), we can efficiently verify that
Eq. (1) holds by comparing coefficients on the left and on the right.

In order to emphasize the variables for the proofs, we sometimes
write Eq. (2) as { f1(x) ≥ 0, . . . , fm(x) ≥ 0} `x,` {g(x) ≥ 0}.2

The following theorem (Krivine’64, Stengle’74) shows that sum-
of-squares proofs are enough to decide the infeasibility of sys-
tems of polynomial constraints. However, the proof is highly non-
constructive and certainly does not give any bounds on the degree
(which we would need in order to use sum-of-squares proofs for the
design of algorithms).

2. Theorem (Positivstellensatz). For every system of polynomial con-
straints A = { f1 ≥ 0, . . . , fm ≥ 0}, either there exists a solution or there
exists a sum-of-squares proof A `` {−1 ≥ 0} for some ` ∈N.

We refer to a sos proof of the form A `` {−1 ≥ 0} as a degree-d
sum-of-squares refutation for A.

It turns out that sum-of-squares proofs capture many kinds of
“real-world mathematical proofs”. In particular, they obey the follow-
ing intuitive inference rules, for all system of polynomial constraints
A,B, C, polynomials f , g : Rn → R and F : Rn → Rm, G : Rn →
Rk, H : Rp → Rn,

addition:
A `` { f ≥ 0, g ≥ 0}
A `` { f + g ≥ 0} ,

multiplication:
A `` { f ≥ 0}, A ``′ {g ≥ 0}

A ``+`′ { f · g ≥ 0} ,

transitivity:
A `` B, B ``′ C
A ``·`′ C

,

substitution:
{F ≥ 0} `` {G ≥ 0}

{F(H)) ≥ 0} ``·deg(H) {G(H) ≥ 0} .

(3)

Exercises

3. Exercise (Univariate polynomials). Let p ∈ R[t] be a univariate
degree-d polynomial such that p(t) ≥ 0 for all t ∈ R. Show that

`d {p ≥ 0} . (4)
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4. Exercise (Some bound). Let d ∈ N and f ∈ R[x] be a polynomial
of degree at most d. Show that there exists a scalar M > 0 such that

{‖x‖2 ≤ 1} `d { f ≤ M} . (5)

Pseudo-distributions

We can represent a finitely supported probability distribution over Rn

by its probability mass function µ : Rn → R≥0 so that µ(x) is equal
to the probability of the point x ∈ Rn under the distribution. We
define pseudo-distributions as generalizations of such probability
mass functions. First, we define the formal expecation of a function
f : Rn → R under a finitely supported function µ,

Ẽ
µ

f = ∑
x∈support(µ)

f (x) · µ(x) . (6)

Note that since µ is finitely supported there are no issues of measura-
bility or convergence here.

5. Definition (pseudo-distribution). A finitely supported function
µ : Rn → R is a degree-d pseudo-distribution if Ẽµ 1 = 1 and Ẽµ f 2 ≥ 0
for all polynomials f on Rn with deg f ≤ d/2.

Furthermore, if support(µ) ⊆ Ω, we say that µ is a degree-d pseudo-
distribution over Ω.

Note that these definitions are consistent with our previous defini-
tion for pseudo-distributions over the hypercube.

Unlike for actual probability distributions, many computational
problems for pseudo-distributions admit efficient algorithms. The
following characterization in terms of positive semidefinite matrices
is the main structure that those algorithms exploit.

6. Lemma (pseudo-moments). Let µ : Rn → R be finitely supported and
Ẽµ 1 = 1. Then, µ is a degree-d pseudo-distribution if and only if formal

degree-d moment matrix Ẽµ(x)

(
(1, x)⊗d/2

)(
(1, x)⊗d/2

)
ᵀ is positive

semidefinite.

Proof. Suppose that the degree-d moment matrix M is positive
semidefinite. Let p be any polynomial of degree at most d/2. Let v be
a vector such that p(x) = 〈p, (1, x)⊗d/2〉. Then, Ẽµ p2 = 〈v, Mv〉 ≥ 0.
It follows that µ is a degree-d pseudo-distribution.

On the other hand, suppose that this moment matrix M is not posi-
tive semidefinite. Then, there exists a vector v such that 〈v, Mv〉 < 0.
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3 The parameter ` here allows us some
additional freedom which will be
important for stating the interaction
between sum-of-squares proof and
pseudo-distributions. The idea behind
the condition ∑i∈S max{deg fi , `} is that
it bounds the degree of the polynomial
h ·∏i∈S fi by d, even when we treat each
fi to have degree max{deg fi , `}.

4 The technical term for this property
of systems of polynomial constraints is
Archimedian.

5 Note that the duality between pseudo-
distributions and sos proofs for the
Boolean hypercube is stronger because
it is possible to choose ε = 0 below.

Let p be the polynomial p(x) = 〈v, (1, x)⊗d/2〉. Then, Ẽµ p2 =

〈v, M, v〉 < 0. It follows that µ is not a degree-d pseudo-distribution.

The following definition formalizes what it means for a pseudo-
distribution to satisfy a system of polynomial constraints.

7. Definition (Model for polynomial constraints). Let A = { f1 ≥
0, . . . , fm ≥ 0} be a set of polynomial constraints over Rn. Let
µ : Rn → R be a pseudo-distribution. We say that µ satisfies A at
degree `, denoted µ |=` A, if every set S ⊆ [m] and every sos polyno-
mial p on Rn with deg h + ∑i∈S max{deg fi, `} ≤ d satisfies3

Ẽ
µ

h ·∏
i∈S

fi ≥ 0 . (7)

We write µ |= A (without further specifying the degree) if µ |=0 A.

Note that if a degree-d pseudo-distribution µ satisfies µ |= { f ≥ 0}
for a polynomial f with deg f ≤ d, then Ẽµ f ≥ 0. However, if µ only
satisfies µ |=` { f ≥ 0}, then we can only conclude Ẽµ f ≥ 0 if ` ≤ d.

Duality between pseudo-distributions and sum-of-squares
proofs

The following theorem shows a duality between pseudo-distributions
and sos proofs for systems of polynomial constraints that are explic-
itly bounded in the sense that they contain a constraint that implies
that every variable is restricted to a finite interval.4

8. Theorem (Duality of pseudo-distributions and sos proofs). Let A
be a system of polynomial constraints over R[x] that contains a constraint
of the form ‖x‖2 ≤ M for some scalar M ≥ 0. Then for every even d ∈ N

and every polynomial f ∈ R[x]≤d, exactly one of the following conditions is
satisfied:5

• for every ε > 0, there exists a degree-d sos proof A `d { f ≥ −ε},

• there exists a degree-d pseudo-distribution µ : Rn → R such that µ |= A
and Eµ f ≤ 0.

A direct consequence of this theorem is that for all A and f as
above, the supremum of the set {c ∈ R | A `d f ≥ c} is equal to the
minimum value of Eµ f over all degree-d pseudo-distributions µ such
that µ |= A.
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6 Exercise: Show that for every
polynomial f ∈ R[x]≤d, there
exists a scalar M > 0 such that
{‖x‖2 ≤ 1} `d { f ≤ M}.

An important special case of the above theorem is that f = −1. In
this case the theorem says that either A has a degree-d sos refutation
so that A `d {−1 ≥ 0} or there exists a degree-d pseudo-distribution
µ that satisfies the constraints D |= A.

Proof. Let C ⊆ R[x]≤d be the cone of polynomials g such that A `d

{g ≥ 0}. We will show that if f is in the closure of C, then A `d

{ f ≥ −ε} for all ε > 0 and thatif f is not in the closure of C, then
there exists a degree-d pseudo-distribution µ such that µ |= A and
Ẽµ f < 0.

If f is in the closure of C, then by convexity there exists a polyno-
mial g ∈ C such that (1− ε) f + εg ∈ C for all ε > 0, which means that
A `d { f ≥ −ε(g− f )} for all ε > 0. Since A contains a constraint of
the form ‖x‖2 ≤ M, it follows that A `d {g− f ≤ M′} for some scalar
M′ > 0.6 Putting these sos proofs together, we get A `d { f ≥ −ε} for
all ε > 0.

If f is not in the closure of C, then there exists a separating linear
functional φ such that φ[ f ] < 0 and φ[g] ≥ 0 for every g ∈ C. We
claim that by rescaling we may assume φ[1] = 1. It is enough to
show that φ[1] > 0. Indeed, since A contains a constraint of the
form ‖x‖2 ≤ M, we have A `d { f ≤ M′} for some scalar M′ > 0.
Therefore, M′− f ∈ C and 0 ≤ φ[M′− f ] = M′ ·φ[1]−φ[ f ] < M′ ·φ[1],
which means that φ[1] > 0.

Using multivariate interpolation, we can represent the linear
functional φ as a linear combination of point evaluations, i.e., there
exist points y(1), . . . , y(m) ∈ Rn and scalars α1, . . . , αm ∈ R such that
φ[g] = ∑m

i=1 αi · g(y(i)) for all g ∈ R[x]≤d. Let µ : Rn → R be the
finitely-supported function such that µ(y(i)) = αi for all i ∈ [m]

and µ(y) = 0 for y ∈ Rn \ {y(1), . . . , y(m)}. Then, µ is a degree-d
pseudo-distribution with µ |= A and Ẽµ f < 0.

Soundness and completeness

It turns out that the duality between pseudo-distributions and sum-
of-squares proofs is related to the idea that sum-of-squares proofs
are a sound and complete proof system when allowing pseudo-
distributions as models.

We remark that the following lemmas about soundness and com-
pleteness do not contain significant new ideas beyond the duality
of pseudo-distributions and sos proofs. However, they are useful
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7 We have not defined what it means
for a pseudo-distribution to approxi-
mately satisfy a system of polynomial
constraints. The idea is that we allow
a small slack for all of the equations
Eq. (7).

in order to reason about pseudo-distributions and sos proofs in a
composable way.

9. Lemma (Soundness). Let µ be a pseudo-distribution and let A,B be
systems of polynomial constraints. Suppose µ satisfies µ |=` A and there
exists a sum-of-squares proof A ``′ B. Then, µ satisfies µ ``·`′ B.

This soundness lemma shows that sum-of-squares proofs allow us
to reason about properties of pseudo-distributions.

The following completeness theorem shows that sum-of-squares
proof allow us to reason about all properties of pseudo-distributions
(under the mild technical assumption that the system of polynomial
constraints is explicitly bounded).

10. Lemma (completeness). Let d ≥ `′ ≥ `, and let A,B ⊆ R[x] be
systems of polynomial constraints such that A contains a constraint of the
form M− ∑n

i=1 x2
i ≥ 0 for some M ≥ 0. Suppose every degree-d pseudo-

distribution µ that satisfies µ |=` A also satisfies µ |=`′ B, then for every
ε > 0 there exists a sum-of-squares proof A `d Bε, where Bε is the system
obtained from B by weakening each constraint by ε.

General sum-of-squares algorithm

The following theorem shows that we can efficiently search through
pseudo-distributions satisfying a system of polynomial constraints.

11. Theorem (general sum-of-squares algorithm). There exists an algo-
rithm that given d and a satisfiable, explicitly bounded system of polynomial
constraints A over Rn, outputs in time nO(d) a degree-d pseudo-distribution
that approximately satisfies µ |= A up to error 2−n.7

About approximation errors and bit complexity: We can still use
the same kind of sum-of-squares proofs in order to argue about
properties of pseudo-distributions that approximately satisfy a
system of polynomial constraints. However, one caveat is that in
order for approximation errors not to amplify we need to ensure that
the bit complexity of the coefficients of the sum-of-squares proofs
we apply are polynomially bounded. While there are examples
that require sum-of-squares proofs with exponential bit complexity
(O’Donnell [2016]), the proofs that arise in the settings we consider
for designing algorithms have small bit complexity.



Proof, beliefs, and algorithms through the lens of sum-of-squares 7

Sum-of-squares certificates over instance-independent variety

In this section, we discuss properties of pseudo-distributions and sos
proofs in a setting that generalizes the Boolean hypercube but avoids
some of issues that arise in the general case.

Let Ω ⊆ Rn be an algebraic set (defined by a system of polyno-
mial equations) such that f1, . . . , fm are a linear basis for the set of
polynomials of degree at most d that vanish over Ω,

Span{ f1, . . . , fm} = R[x]≤d ∩ I(Ω) . (8)

(Here, I(Ω) denotes the set of polynomials that vanish over Ω.) For
many interesting choices of Ω (e.g., the Boolean hypercube and the
Euclidean sphere), we can construct such a basis f1, . . . , fm in time
nO(d).

We will show that if we are given such a basis for the degree-d
part of the ideal of Ω, then much about sum-of-squares proofs and
pseudo-distributions works like for the hypercube.

12. Theorem (Sum-of-squares duality over simple varieties). Let Ω
and f1, . . . , fm ∈ R[x]≤d be as in Eq. (8). Let A = { f1 = 0, . . . , fm = 0}.
Then, every f ∈ R[x]≤d satisfies exactly one of the following conditions:

• there exists a degree-d sos proof A `d { f ≥ 0},

• there exists a degree-d pseudo-distribution µ : Rn → R such that µ |= A
and Ẽµ f < 0.

As for the hypercube, we can make this theorem algorithmic.

13. Theorem (Sum-of-squares algorithm over simple varieties). For
every even d ∈ N, there exists an nO(d)-time algorithm that given a basis
f1, . . . , fm for R[x]≤d ∩ I(Ω) as in Eq. (8) and a polynomial f ∈ R[x]≤d

outputs,

• either a degree-d sos proof A `d { f ≥ 0},

• or a degree-d pseudo-distribution µ : Rn → R such that µ |= A and
Ẽµ f ≤ 2−n.

We remark that under mild assumptions on Ω, for every degree-
d pseudo-distribution µ : Rn → R such that µ |= A, there exists
a degree-d pseudo-distribution µ′ : Ω → R with the same first d
moments, so that Ẽµ(x)(1, x)⊗d = Ẽµ′(x)(1, x)⊗d.
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