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Integrality Gap for the Knapsack Problem

Note: These notes are still somewhat rough.

Suppose we have n items of unit size and we want to pack as
many as possible in a knapsack of size r. Then, we can pack at most
brc number of items in the knapsack. In this lecture, we show that
this seemingly simple reasoning that one can’t pack a “fractional"
item is not captured by low-degree SoS algorithm. Specifically, we’ll
prove Grigoriev’s theorem (Grigoriev [2001]):

1. Theorem (SoS Hardness for Knapsack). For any r ≤ n/2, there is
a pseudodistribution of degree Ω(r) supported on points x ∈ {0, 1}n such
that

n

∑
i=1

xi = r. (1)

Observe that for non-integral r the above yields an integrality gap
for the special case of knapsack presented above of degree Ω(r).

Grigoriev’s original proof of this result was a elegant argument
that analyzed a natural, maximally symmetric pseudodistribution
that we will momentarily describe. This argument essentially in-
vented several basic results about the spectrum of matrices from
the Johnson Scheme studied in algebraic combinatorics. We highly
recommend reading Grigoriev’s original proof - in the lecture how-
ever, we will rely on standard results from the theory of association
schemes and get a shorter proof. This argument was first presented
by Meka and Wigderson (Meka and Wigderson [2013]) in a work that
attempted to show the first SoS lower bound for the Planted Clique
problem.

The Pseudodistribution

Fix d = Θ(r) to be chosen later. The idea for constructing degree
d pseudodistribution is very natural - the constraint ∑i xi = r is
symmetric in r. Thus, if we had an arbitrary degree 2d pseudodis-
tribution, we could average it over all permutations σ of [n] and
obtain another degree d pseudodistribution over the hypercube that
is symmetric w.r.t. permutations of [n] and satisfies Eq. (1).

Thus, for any symmetric pseudodistribution µ, there exists a
function f such that for every multilinear monomial xS = Πi∈Sxi,
Ẽ[xS] = f (|S|). It turns out that there’s no choice in f either.
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First, ∑n
i=1 Ẽµ[xi] = n f (1). On the other hand, since µ is supported

on x satisfying Eq. (1), ∑n
i=1 Ẽ[xi] = r. Thus, f (1) = r/n for every i.

r f (1) = r Ẽ[xi] = Ẽ[xi(
n

∑
j=1

xj)] = Ẽ[xi]+ (n− 1) Ẽ[xixj] = f (1)+ (n− 1) f (2),

(2)
which implies that f (2) = (r − 1)/(n − 1). One can repeat this
argument to obtain that

Ẽ[xS] = f (|S|) =
( r
|S|)

( n
|S|)

, (3)

for every S such that |S| ≤ 2d.

It is easy to check that Ẽ constructed here satisfies the constraint
Eq. (1). Thus, as usual, we are left with showing the positivity of Ẽ.

Reduction to Positivity over Squared Homogenous Polynomials

Because of the linear equality constraint Eq. (1), it turns out that it
is enough to prove positivity of Ẽ[p2] for any homogenous degree d
polynomial.

2. Lemma (Positivity over Squared Homogenous Polyomials is
Enough). Suppose M be any linear operator on degree d polynomials
that is consistent with the constraints x2

i = xi for every i ∈ [n] and
∑n

i=1 xi − r = 0. Suppose M(p2) ≥ 0 for every degree d homogenous
polynomial p. Then, M(q2) ≥ 0 for any degree d polynomial q.

Proof Sketch. The idea is that any polynomial p of degree d can be
written as

p1 +
n

∑
i=1

(x2
i − xi)pi + q(

n

∑
i=1

xi − r) (4)

for a homogenous degree d polynomial p1, degree at most d − 2
polynomials pi and degree at most d− 1 polynomial q. This can be
shown by polynomial division, for example.

Once we have the above representation, squaring the right hand
side of Eq. (4) yields p2

1 plus terms that have either (x2
i − xi) or

(∑n
i=1 xi − r) as a factor. Applying M to the RHS, using linearity and

the fact that M satisfies both Boolean and the knapsack constraints
thus yields that M(p2) = M(p2

1) ≥ 0.

We can now go to the matrix view of things in order to show
positivity of Ẽ on homogenous degree d polynomials - we have seen
this argument several times in the lectures before.
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3. Exercise (Moment Matrix). LetM ∈ R(n
d)×(

n
d) be defined by

M(S, T) = Ẽ[xS∪T ] = f (2d− |S ∩ T|) for any S, T ∈ (n
d). Show that

Ẽ[p2] ≥ 0 for every homogenous degree d polynomial if and only if
M� 0.

Note thatM is the (n
d)× (n

d) dimensional principal sub-matrix of
the usual moment-matrix of Ẽ.

Johnson Scheme

The discussion here is based on (Meka and Wigderson [2013]) which
in turn is based on (Godsil [1993]). Association schemes are well-
studied objects in Algebraic Combinatorics. For our purposes, we can
think of them as a commutative algebra of square matrices - i.e. adding
or multiplying any two matrices from the set yields another matrix
in the set and for any two matrices A, B in the set, AB = BA. We are
interested in one such well-studied scheme.

4. Definition (Johnson Scheme). Let d < n/2 ∈ N be parameters.
The Johnson Scheme Jn,d of order d on [n] is the linear subspace of all
matrices J in R(n

d)×(
n
d) that are set symmetric i.e. J(I, J) = h(|I ∩ J|)

for any I, J ∈ (n
d). In other words, any entry of any matrix in the

subspace depends only on the size of the intersection of the row and
column index sets.

We now define two basis for Jn,d.

5. Definition (D Basis). For 0 ≤ ` ≤ d ≤ n, let D` ∈ R(n
d)×(

n
d) be the

matrix defined by

D`(I, J) =

1 if |I ∩ J| = `

0 otherwise..
(5)

D0 is then the well-studied Set Disjointness matrix from commu-
nication complexity. It is easy to check that D` for ` ≤ d span Jn,d.
Further, it’s also easy to verify that the D`’s commute with each other
- and thus every pair of matrices in Jn,d commute establishing that
Jn,d is indeed a commutative algebra of matrices.

For the purposes of proving PSDness, another basis of Jn,d is very
useful - the P-Basis.

6. Definition (P Basis). For 0 ≤ t ≤ d, let Pt ∈ R(n
d)×(

n
d) be defined by

Pt(I, J) =
(
|I ∩ J|

t

)
, (6)
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where it’s understood that if |I ∩ J| = 0, then Pt(I, J) = 0.

There’s an equivalent definition of Pts that’s helpful in calcula-
tions.

7. Exercise (Alternate Definition of P-Basis). Let RT be the rank
1 matrix defined by RT(I, J) = 1(I ⊇ T)1(J ⊇ T). Show that
Pt(I, J) = ∑T⊆[n],|T|=t RT .

The above exercise can be used to obtain explicit basis change
coefficients between the D and the P basis.

8. Exercise (Change between P and D Basis). Show that

1. For 0 ≤ t ≤ d, we have Pt = ∑d
`=t (

`
t)D`.

2. For 0 ≤ ` ≤ d, we have D` = ∑t≥`(−1)t−`(t
`)Pt.

The main results from the theory of association schemes of interest
to us is the characterization of eigenspaces and eigenvalues of the
matrices in Jn,d. This is done using the fact that there’s a natural
action (the relabeling action on elements of [n]) of Sn that commutes
with every matrix in Jn,d (because of set-symmetry of Jn,d-matrices).
This implies that matrices in Jn,d must share eigenspaces with those
corresponding to the action of the symmetric group Sn. The latter
are well understood as representations of Sn and one can use this
understanding to arrive at an explicit description of eigenvalues and
eigenspaces of matrices in Jn,d.

For our purposes, we will just state the results required for us.

9. Lemma (Eigenspaces of Johnson Scheme). For Pt = Pt,n,d defined as
above, there exist pairwise orthogonal subspaces V0, V1, V2, . . . , Vd such that

1. V0, V1, V2, . . . , Vd are eigenspaces for Pt for every 0 ≤ t ≤ r and
consequently for every matrix in Jn,d.

2. dim(Vj) = (n
j)− ( n

j−1).

3. For any matrix J ∈ Jn,d, let λi(J) denote the eigenvalue of J on the
subspace Vi. Then,

λi(Pt) =

(n−t−i
d−t ) · (d−i

t−i) if i ≤ t

0 otherwise.
(7)

The above lemma helps us estimate the eigenvalues of any matrix
that can be written as a linear combination of the matrices Pt or D`

matrices. In particular, we will use the following estimate on the
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eigenvalues of such matrices in our analysis ofM from the previous
section.

10. Lemma (Eigenvalue Estimates for Johnson Scheme). Let Q =

∑` α`D` ∈ Jn,d and βt = ∑t≤` (
t
`)α` for α` ≥ 0. Then, for 0 ≤ j ≤ r,

λj(Q) ≤ ∑
t≥j

βt

(
n− t− j

d− t

)(
d− j
t− j

)
. (8)

Proof.

∑
`

α`D` = ∑
`

α`(∑
t≥`

(−1)t−`
(

t
`

)
Pt)

= ∑
t

Pt(∑
`≤t

(−1)t−`
(

t
`

)
α`)

≤∑
t

Pt(∑
t≤`

α`) = ∑
t

βtPt

(9)

Using that Q and Pt share eigenspaces and applying Lemma
Lemma 9, we obtain the estimate claimed.

PSDness of Ẽ

11. Lemma (M is PSD). M� 0.

Proof. We are going to use Lemma Lemma 10. For any non-negative
α1, α2, . . . , αd, note that:

0 �∑
t

αtPt =
r

∑
`=0

(
`

∑
t=0

αt)

(
`

t

)
)D` (10)

From the definition ofM, we know thatM = ∑d
`=0 f (`)D2d−`. We

will thus be done from above if we can find non-negative αt such that
(∑`

t=0 αt)(
`
t) = f (2d− `) for every `.

Observe that f (2d− `) = f (2d) · (
n−2d+`

` )

(r−2d+`
` )

.

Choose αt = αt =
f (d)
(n

d)
· (n−r

t )

(r−2d+t−1
t )

.

We can now verify:

f (2d)
(

n− 2d + `

`

)
= f (2d)

`

∑
t=0

(
n− r

t

)
·
(

r− 2d + `− 1
`− t

)

=
`

∑
t=0

αt ·
(

r− 2d + t− 1
t

)(
r− 2d + `− 1

`− t

)

=
`

∑
t=0

αt

(
`

t

)
·
(

r− 2d + `

`

)
.

(11)
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The lemma now follows and in fact shows that the minimum
eigenvalue ofM is αd.
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