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Mathematical background and pre work

Mathematical background

We will not assume a lot of mathematical background in this course
but will use some basic notions from linear algebra, such as vector
spaces (finite dimensional and almost always over the real numbers),
matrices, and associated notions such as rank, eigenvalues and
eigenvectors. We will use the notion of convexity (of functions and
sets) and some of its basic properties. We will also use basic notions
from probability such as random variables, expectation, variance,
tail bounds as well as properties of the normal (a.k.a. Gaussian)
distribution. Though this will not be our main focus, we will assume
some comfort with algorithms and notions such as order of growth
(O(n), 2Ω(n), etc..) and some notions from computational complexity
such as the notion of a reduction and the classes P and NP.

Probably the most important mathematical background for this
course is that ever elusive notion of “mathematical maturity” which
basically means the ability to pick up on the needed notions as we go
along. At any point, please do not hesitate to ask questions when you
need clarifications or pointers to some references, either in the class
or on the Piazza forum.

Some references for some of this material (that include much more
than what we need are):

• All these topics are covered to some extent in Ryan O’Donnell’s
CMU class 15-859T: A Theorist’s Toolkit see in particular Lectures
6-8 (spectral graph theory) and Lectures 13-14 (linear program-
ming). See also the lecture notes for Jonathan Kelner’s MIT course
18.409 Topics in Theoretical Comp Sci. While not strictly necessary,
you may find Luca Trevisan series of blog posts on expanders
(from 2006, 2008, and 2011) illuminating.

• We will sometimes touch upon Fourier analysis of Boolean func-
tions which is covered by O’Donnell’s excellent book and lecture
notes

• For basic linear algebra and probability, see the lecture notes by
Papadimitriou and Vazirani, the lecture notes of Lehman, Leighton
and Meyer from MIT Course 6.042 “Mathematics For Computer
Science” (Chapters 1-2 and 14 to 19 are particularly relevant).
The “Probabilistic Method” book by Alon and Spencer is a great
resource for discrete probability. Also, the books of Mitzenmacher

http://www.cs.cmu.edu/~odonnell/toolkit13/
http://stellar.mit.edu/S/course/18/fa09/18.409/materials.html
http://lucatrevisan.wordpress.com/tag/expanders/
http://www.contrib.andrew.cmu.edu/~ryanod/
http://www.contrib.andrew.cmu.edu/~ryanod/
https://people.eecs.berkeley.edu/~vazirani/f06cs70.html
https://people.eecs.berkeley.edu/~vazirani/f06cs70.html
https://people.csail.mit.edu/meyer/mcs.pdf
https://people.csail.mit.edu/meyer/mcs.pdf
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and Upfal and Prabhakar and Raghavan cover probability from a
more algorithmic perspective.

• Convexity, linear programming duality: see Boyd and Parrilo’s
lecture notes and in particular Lectures 1-5. The book Convex
Optimization by Boyd and Vandenberghe, which is available
online, is an excellent resource for this area, which includes much
more than what we will use here.

Pre work (“homework 0”)

Please do the following reading and exercises before the first lecture.

Reading:

Please read the lecture notes for the introduction to this course and
for definitions of sum of squares over the hypercube. You don’t have
to do the exercises in the lecture notes, but you may find attempting
them useful. (See here for all notation used in these lecture notes.)

Exercises:

You do not need to submit these exercises, or even to write them
down properly, and feel free to collaborate with others while working
on them.

All matrices and vectors are over the reals. In all the exercises
below you can use the fact that any n × n matrix A has a singular
value decomposition (SVD) A = ∑r

i=1 σiui ⊗ vi with σi ∈ R and
ui, vi ∈ Rn, and for every i, j ‖ui‖ = 1 , ‖vj‖ = 1 (where ‖v‖ =√

∑ v2
i ), and for all i 6= j, 〈ui, uj〉 = 0 and 〈vi, vj〉 = 0. (For vectors u, v,

their tensor product is defined as u⊗ v is the matrix T = uv> where
Ti,j = uivj.) Equivalently A = UΣV> where Σ is a diagonal matrix
and U and V are orthogonal matrices (satisfying U>U = V>V = I).
If A is symmetric then there is such a decomposition with ui = vi

for all i (i.e., U = V). In this case the values σ1, . . . , σr are known as
eigenvalues of A and the vectors v1, . . . , vr are known as eigenvectors.
(This decomposition is unique if r = n and all the σi’s are distinct.)
Moreover the SVD of A can be found in polynomial time. (You can
ignore issues of numerical accuracy in all exercises.)

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-079-introduction-to-convex-optimization-fall-2009/lecture-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-079-introduction-to-convex-optimization-fall-2009/lecture-notes/
http://web.stanford.edu/~boyd/cvxbook/
http://web.stanford.edu/~boyd/cvxbook/
http://sumofsquares.org/public/lec01-1_introduction.html
http://sumofsquares.org/public/lec01-2_definitions.html
http://sumofsquares.org/public/lec00-2_notation.html
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1 You can do this via the following
stronger inequality: for any (not
necessarily symmetric) matrix A,
‖A‖ ≤

√
αβ where α = maxi ∑j |Ai,j|

and β = maxj ∑i |Ai,j|.

1. Exercise. For an n× n matrix A, the spectral norm of A is defined
as the maximum of ‖Av‖ over all vectors v ∈ Rn with ‖v‖ = 1. *
Prove that if A is symmetric (i.e., A = A>), then ‖A‖ ≤ maxi ∑j |Ai,j|.
See footnote for hint1 * Show that if A is the adjacency matrix of a
d-regular graph then ‖A‖ = d.

2. Exercise. Let A be a symmetric n× n matrix. The Frobenius norm of
A, denoted by ‖A‖F, is defined as

√
∑i,j A2

i,j.

3. Exercise. Prove that ‖A‖ ≤ ‖A‖F ≤
√

n‖A‖. Give examples where
each of those inequalities is tight.

4. Exercise. Let Tr(A) = ∑ Ai,i. Prove that for every even k, ‖A‖ ≤
Tr(Ak)1/k ≤ n1/k‖A‖.

5. Exercise (Spectral norm of a random matrix). Let A be a symmet-
ric matrix such that Ai,i = 0 for all i and Ai,j is chosen to be a random
value in {±1} independently of all others.

• Prove that (for n sufficiently large) with probability at least 0.99,
‖A‖ ≤ n0.9.

• (harder) Prove that with probability at least 0.99, ‖A‖ ≤ n0.51.

While ‖A‖ can be computed in polynomial time, both
maxi ∑j |Ai,j| and ‖A‖F give even simpler to compute upper bounds
for ‖A‖. However the examples in the previous exercise show that
they are not always tight. It is often easier to compute Tr(Ak)1/k than
trying to compute ‖A‖ directly, and as k grows this yields a better
and better estimate.

6. Exercise. Let A be an n × n symmetric matrix. Prove that the
following are equivalent:

1. A is positive semi-definite. That is, for every vector v ∈ Rn,
v>Av ≥ 0 (where we think of vectors as column vectors and so
v>Av = ∑i,j Ai,jvivj).

2. All eigenvalues of A are non-negative. That is, if Av = λv then
λ ≥ 0.

3. The quadratic polynomial PA defined as PA(x) = ∑ Ai,jxixj is a
sum of squares. That is, there are linear functions L1, . . . , Lm such
that PA = ∑i(Li)

2.

4. A = B>B for some n× r matrix B

5. There exist a set of correlated random variables (X1, . . . , Xm) such
that for every i, j, E XiXj = Ai,j and moreover, for every i, the
random variable Xi is distributed like a Normal variable with
mean 0 and variance Ai,i.
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