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1 Up to a constant factor this is the same
as the probability that we leave the set S
if we start at a random vertex in S and
go to one of its d neighbors at random.
Can you see why?.
2 For example, in a bipartite d-regular
graph each side of the bipartition has
expansion 2.
3 Concretely, the expected expansion of
a random vertex subset is close to 1.

4 The literature on graph expansion
defines several closely related quantities
such as sparsest cut, expansion, and
conductance that are all equivalent
up to constant factors. We do not
distinguish between these notions here.

Cheeger’s inequality

Let G be a d-regular graph with vertex set V = [n]. For a vertex
subset S ⊆ V, we define its expansion ϕG(S) as:

ϕG(S) =

∣∣E(S, V \ S)
∣∣

d
n ·
∣∣S∣∣ · ∣∣V \ S

∣∣ . (1)

Another way to say it is that the expansion of a set S is the number
of edges between S and its complement in G as a fraction of the
expected number of edges in a random graph with average degree d.
1

It is not difficult to check that the expansion of any set S is a
number between 0 and 2.2 Most sets in a graph have expansion close
to 1.3 Therefore, an interesting question about a graph is whether it
contains exceptional sets with expansion close to 0 or whether all sets
have expansion bounded away from 0.

The expansion of graph G, denoted ϕ(G), is the minimum expan-
sion ϕG(S) over all sets S ⊆ [n].4 The problem of computational
the expansion of a graph (and finding the corresponding set) is a
fundamental graph problem, with a wide variety of applications to
network design, analyzing Markov chains, and more. It is also widely
used as a tool in many “divide and conquer” algorithms.

1. Problem (min expansion). Given a regular graph G, find vertex
set S ⊆ V(G) so as to minimize ϕG(S).

For every ε > 0, in a random regular graph of sufficiently large
degree, ϕG(S) will be at least 1− ε. On the other hand, if we “plant”
a non-expanding set in a random graph by selecting a set S of half
the vertices and conditioning the random edges touching S to stay
inside it with probability 1− ε, it might not be a priori clear how
one can detect this set. For this reason, like in the max cut case, it is
not a priori clear how one can certify that a highly expanding graph
(such as a random d-regular graph) has expansion ϕ(G) smaller
than 1 nor is it clear how to find any set with ϕG(S) � 1, even if
ϕ(G) = o(1). Nevertheless, like in the case of max cut, it turns out
that one can in fact beat the “combinatorial” (or linear-programming
based) algorithms.

Bounding rational functions using sum of squares

A priori it might not be clear how to apply the sum-of-squares algo-
rithm to Min Expansion. So far we have talked about the problem of
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5 It is instructive to verify that the
approximation guarantees of the
algorithms based on degree-2 sum-of-
squares and linear programming are
incomparable. For small values of ϕ(G),
the linear programming approach has
stronger guarantees. For larger values
of ϕ(G) (say ϕ(G) ≥ 1/ log n) the
guarantees of degree-2 sum-of-squares
are stronger.

minimizing polynomials over the hypercube, but the expansion of a set
S is a rational function of the characteristic vector of S. In particular, if
we let fG(x) = ∑{i,j}∈E(G)(xi − xj)

2 and |x| = ∑n
i=1 xi, then

ϕ(G) = min
x∈{0,1}n

fG(x)
d
n · |x| · (n− |x|)

(2)

The following observation allows us to apply sum-of-squares also
for minimizing rational functions: in order to certify that for every
x ∈ {0, 1}n, a rational function of the form P(x)/Q(x) is at least
ε > 0, all we need to do is to show that the polynomial P− ε · Q is
always non-negative.

The following theorem, known as the discrete Cheeger’s Inequality
(obtained by Dodziuk [1984], and independently by Alon and Mil-
man [1985] and Alon [1986] as a discrete version of (Cheeger [1970])),
shows that degree-2 sum-of-squares does provide such a certificate,
in particular, showing that we can efficiently certify that ϕ(G) ≥ 0.001
for every graph that satisfies ϕ(G) ≥ 0.1.

2. Theorem (degree-2 sos certificates for expansion). For every d-
regular graph G with vertex set [n], the following function has a degree-2
sos certificate

fG(x)− 1
2 ϕ(G)2 · d

n |x|(n− |x|) . (3)

The proof of the above theorem also shows that there is a
polynomial-time algorithm to find S with ϕG(S) = O(

√
ϕ(G)).

Leighton and Rao [1988] gave a polynomial-time algorithm based
on linear programming to find S with ϕG(S) = O(log n)ϕ(G),
that is, the algorithm achieves approximation ratio O(log n).5 In a
breakthrough work, Arora et al. [2004] improved this approximation
ratio O(

√
log n). Their algorithm uses the degree-4 SOS algorithm,

and we will see it later in this course. Shortly thereafter, Agarwal
et al. [2005] gave the analogous result for Max Cut, namely an
algorithm that given G with maxcut(G) = 1 − ε, outputs S with
ϕG(S) ≥ 1−O(

√
log n)ε.

Rounding pseudo-distributions for Min Expansion

We now show how Theorem 2 is implied by the standard formulation
of the discrete Cheeger’s inequality.

3. Theorem (Discrete Cheeger’s inequality). For any d-regular n-
vertex graph G with adjacenecy matrix AG, there exists a set S of at most
n/2 vertices such that ϕS(G) ≤

√
2λ where λ is the second smallest

eigenvalue of the normalized Laplacian LG = Id− 1
d AG.
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The proof, which we omit here, is not extremely complicated and
can be found in several sources (e.g., see handouts 3 and 4 in Luca
Trevisan’s course).

For every vector x ∈ Rn,

〈x, LGx〉 =
n

∑
i=1

x2
i − 2

d ∑
{i,j}∈E(G)

xixj =
1
d fG(x) . (4)

Moreover, the minimum eigenvector of LG is always the all ones
vector 1. If the second smallest eigenvector of LG is λ then for every
vector x ∈ Rn, its projection y = x − 1

n 〈1, x〉1 into the subspace
orthogonal to 1 satisfies fG(y) ≥ λ · ‖y‖2.

These above facts together with the observation that |x| = ∑n
i=1 x2

i
over {0, 1}n are enough to derive Theorem 2 from Theorem 3. We
leave the details as an exercise.

4. Exercise (Cheeger as an sos certificate). Prove Theorem 2 using
Theorem 3.

The following exercises asks you to prove the corresponding
statement about pseudo-distributions.

5. Exercise (Rounding deg-2 pseudo-distributions for min expansion).
Let G be a d-regular graph on n vertices, let ε > 0, and let µ be a
degree-2 pseudo-distribution over {0, 1}n such that

Ẽ
µ

fG ≤ ε · Ẽ
µ

d
n |x|(n− |x|) . (5)

Prove that there exists a set S ⊆ V(G) with ϕG(S) ≤
√

2ε.

It turns out the proof of Cheeger’s inequality is constructive, and
this can be used to show an efficient rounding algorithm that takes any
pseudo-distribution satisfying Ẽ n fG ≤ ε Ẽ d|x|(n− |x|) and obtains
from it an actual set S with ϕG(S) ≤ O(

√
ε).
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