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Flag algebras and extremal combinatorics

Note: These are very rough scribe notes of what was covered by
Pablo Parrilo. Please see the video for more complete coverage.

Look at the problem of certifying p(x) ≥ 0 for symmetric polyno-
mial p.

Example: Compute α(G) where G is the Hamming weight graph
with vertices corresponding to {0, 1}n and edges corresponding to
pairs with Hamming distance at most k. In this case α(G) is the max-
imum size of an error correcting code of block length n and distance
k.

1. Definition. Let G be a group of linear transformations over Rn.
We say that a polynomial p is G symmetric if p(x) = p(τ(x)) for every
τ ∈ G.

Digression to representation theory.

A representation is ρ : G → GL(V) where V is a subspace which is
homomorphic.

Example: S2: group of permutations on set of two elements. We
can write S2 = {e, g} , g2 = e and e is the identity element.

Natural representation is ρ : S2 → GL(R2) where ρ(e) =
(

1 0
0 1

)
and

ρ(g) =
(

0 1
1 0

)
. That is ρ(e) is the map (x, y) 7→ (x, y) while ρ(g) is the

map (x, y) 7→ (−y, x).

This representation has two invariant one dimensional subspaces
{x = y} and {x = −y}. Restricting it to these two subspaces gives
the trivial representation and the alternating / sign representation
where ρ(g) = +1 and ρ(e) = −1.

An invariant subspace of a representation ρ : G → GL(V) is a
subspace W ⊆ V such that ρ(GgW = W for all g ∈ G. We say
that an invariant subspace is trivial if W = V or W = {0}. An
irreducible representation (irrep) is a representation without any non-
trivial invariant subspace.

We say that two representations ρ : G → GL(V) and ρ′ : G →
GL(V′) are equivalent if there is an invertible linear transformation
T : V → V′ such that

ρ(g) = T−1ρ′(g)T (1)

for every g ∈ G.
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Example 2: S3 - group of permutations on set of three elements.
We can write S3 = {e, s, c, c2, cs, sc} where in cycle notation s = (1, 2)
and c = (1, 2, 3). The relations that this satisfies is c3 = e, s2 = e and
s = csc.

We can express the possible irreps in a Young tableus that satisfy
the relation n! = ∑ d2

i .

Example 3: Cn = {0, . . . , n− 1} with addition modulo n. We can
represent this in n ways with ρk(j) = ωkj for ω = e2πi/n. (In Abelian
group all irreps have dimension one.)

Convexity and symmetry

Suppose we want to minimize a univariate function f : R → R and
suppose that it is symmetric in the sense that f (x) = f (−x). A priori
that gives us no information about it, but if we add the condition that
f is convex then we can deduce that it must have a global minimum
at x = 0.

More generally, we say that f : V → R is symmetric with respect to
a group G and a representation ρ if f (ρ(g)x) = f (x) for all g ∈ G.

2. Lemma. If f is symmetric w.r.t. G, ρ and convex then it always has a
minimum x that satisfies the property that x = ρ(g)x for every g ∈ G.

Proof. Given x which achieves the minimum of f , by symmetry
and convexity, the same will hold for x∗ = 1

|G ∑g∈G ρ(g)x, but it is
not hard to verify (exercise!) that the latter will satisfy the above
property.

For a group G and a representation ρ : G → V, we define the fixed
point subspace of ρ to be {x ∈ V : x = ρ(g)x∀g ∈ G}. (Exercise: Verify
that this is indeed a linear subspace.)

Example: Lovasz theta function

Consider the following convex relaxation for the independent set
problem:

For an n vertex graph G, recall that the independent set number
is defined as α(G) = max ∑ xi over x ∈ {0, 1}n such that xixj for all
i ∼ j in G. We can relax this as ϑ(G) = max Tr(JX) over all p.s.d.
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matrices X � 0 such that Tr(X) = 1, Xi,j = 0 for all i ∼ j and where J
is the all 1’s matrix.

For every G, the value ϑ(G) can be thought of as the maximum
of a concave (in fact linear) function over a convex set and so also as
minimizing a convex function. If the graph itself has symmetries then
ϑ itself has symmetries and so its minimum is known to lie in some
nice space. For example, if the graph is the cycle, then the minimum
is achieved by a matrix X which is circulant.

Semidefinite programs and representations.

In sos programs the representations inherit the symmetry in the
instance in a “nice form” which is that if X ∈ Rnd×nd

is a matrix
representing the degree 2d sos solution and ρ : G → GL(Rn) is a
representation with respect to the original function is symmetric,
then if we let ρ′ : G → GL(Rn⊗d

) be the representation obtained
by tensoring ρ then the value of X as a solution to the sos program
equals the value of ρ′(g)>Xρ′(g) for all g ∈ G. This allows to use
Shor’s Lemma to reduce the study of solution to a potentially much
smaller number of equivalence classes.

Examples:

• Minimizing univariate p(x) that satisfies p(x) = p(−x) and hence
p(x) = q(x2).

• Minimizing p(x) over x ∈ {0, 1}n such that p is Sn-symmetric and
hence p(x) = q( 1

n ∑ xi) for some q.

• In coding, we can bound the best possible rate of a code with
given distance (which is the logarithm of the independence num-
ber of the Hamming graph) by the ϑ function, which corresponds
to degree 2 sos, and analyze it using symmetry which allows to
reduce this SDP to an LP. A more sophisticated bound was given
by looking at the degree 4 sos.
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