Flag algebras and extremal combinatorics

Note: These are very rough scribe notes of what was covered by Pablo Parrilo. Please see the video for more complete coverage.

Look at the problem of certifying $p(x) \geq 0$ for symmetric polynomial p.

Example: Compute $\alpha(G)$ where G is the Hamming weight graph with vertices corresponding to $\{0,1\}^{n}$ and edges corresponding to pairs with Hamming distance at most k. In this case $\alpha(G)$ is the maximum size of an error correcting code of block length n and distance k.

1. Definition. Let \mathcal{G} be a group of linear transformations over \mathbb{R}^{n}. We say that a polynomial p is \mathcal{G} symmetric if $p(x)=p(\tau(x))$ for every $\tau \in \mathcal{G}$.

Digression to representation theory.

A representation is $\rho: \mathcal{G} \rightarrow G L(V)$ where V is a subspace which is homomorphic.

Example: S_{2} : group of permutations on set of two elements. We can write $S_{2}=\{e, g\}, g^{2}=e$ and e is the identity element.

Natural representation is $\rho: S_{2} \rightarrow G L\left(\mathbb{R}^{2}\right)$ where $\rho(e)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\rho(g)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. That is $\rho(e)$ is the map $(x, y) \mapsto(x, y)$ while $\rho(g)$ is the map $(x, y) \mapsto(-y, x)$.

This representation has two invariant one dimensional subspaces $\{x=y\}$ and $\{x=-y\}$. Restricting it to these two subspaces gives the trivial representation and the alternating / sign representation where $\rho(g)=+1$ and $\rho(e)=-1$.

An invariant subspace of a representation $\rho: \mathcal{G} \rightarrow G L(V)$ is a subspace $W \subseteq V$ such that $\rho(G g W=W$ for all $g \in \mathcal{G}$. We say that an invariant subspace is trivial if $W=V$ or $W=\{0\}$. An irreducible representation (irrep) is a representation without any nontrivial invariant subspace.

We say that two representations $\rho: \mathcal{G} \rightarrow G L(V)$ and $\rho^{\prime}: \mathcal{G} \rightarrow$ $G L\left(V^{\prime}\right)$ are equivalent if there is an invertible linear transformation $T: V \rightarrow V^{\prime}$ such that

$$
\begin{equation*}
\rho(g)=T^{-1} \rho^{\prime}(g) T \tag{1}
\end{equation*}
$$

for every $g \in \mathcal{G}$.

Example 2: S_{3} - group of permutations on set of three elements. We can write $S_{3}=\left\{e, s, c, c^{2}, c s, s c\right\}$ where in cycle notation $s=(1,2)$ and $c=(1,2,3)$. The relations that this satisfies is $c^{3}=e, s^{2}=e$ and $s=c s c$.

We can express the possible irreps in a Young tableus that satisfy the relation $n!=\sum d_{i}^{2}$.

Example 3: $\mathbb{C}_{n}=\{0, \ldots, n-1\}$ with addition modulo n. We can represent this in n ways with $\rho_{k}(j)=\omega^{k j}$ for $\omega=e^{2 \pi i / n}$. (In Abelian group all irreps have dimension one.)

Convexity and symmetry

Suppose we want to minimize a univariate function $f: \mathbb{R} \rightarrow \mathbb{R}$ and suppose that it is symmetric in the sense that $f(x)=f(-x)$. A priori that gives us no information about it, but if we add the condition that f is convex then we can deduce that it must have a global minimum at $x=0$.

More generally, we say that $f: V \rightarrow \mathbb{R}$ is symmetric with respect to a group \mathcal{G} and a representation ρ if $f(\rho(g) x)=f(x)$ for all $g \in \mathcal{G}$.
2. Lemma. If f is symmetric w.r.t. \mathcal{G}, ρ and convex then it always has a minimum x that satisfies the property that $x=\rho(g) x$ for every $g \in G$.

Proof. Given x which achieves the minimum of f, by symmetry and convexity, the same will hold for $x^{*}=\frac{1}{\mid \mathcal{G}} \sum_{g \in \mathcal{G}} \rho(g) x$, but it is not hard to verify (exercise!) that the latter will satisfy the above property.

For a group \mathcal{G} and a representation $\rho: \mathcal{G} \rightarrow V$, we define the fixed point subspace of ρ to be $\{x \in V: x=\rho(g) x \forall g \in \mathcal{G}\}$. (Exercise: Verify that this is indeed a linear subspace.)

Example: Lovasz theta function

Consider the following convex relaxation for the independent set problem:

For an n vertex graph G, recall that the independent set number is defined as $\alpha(G)=\max \sum x_{i}$ over $x \in\{0,1\}^{n}$ such that $x_{i} x_{j}$ for all $i \sim j$ in G. We can relax this as $\vartheta(G)=\max \operatorname{Tr}(J X)$ over all p.s.d.
matrices $X \succeq 0$ such that $\operatorname{Tr}(X)=1, X_{i, j}=0$ for all $i \sim j$ and where J is the all 1 's matrix.

For every G, the value $\vartheta(G)$ can be thought of as the maximum of a concave (in fact linear) function over a convex set and so also as minimizing a convex function. If the graph itself has symmetries then ϑ itself has symmetries and so its minimum is known to lie in some nice space. For example, if the graph is the cycle, then the minimum is achieved by a matrix X which is circulant.

Semidefinite programs and representations.

In sos programs the representations inherit the symmetry in the instance in a "nice form" which is that if $X \in \mathbb{R}^{n^{d} \times n^{d}}$ is a matrix representing the degree $2 d$ sos solution and $\rho: \mathcal{G} \rightarrow G L\left(\mathbb{R}^{n}\right)$ is a representation with respect to the original function is symmetric, then if we let $\rho^{\prime}: \mathcal{G} \rightarrow G L\left(\mathbb{R}^{n^{\otimes d}}\right)$ be the representation obtained by tensoring ρ then the value of X as a solution to the sos program equals the value of $\rho^{\prime}(g)^{\top} X \rho^{\prime}(g)$ for all $g \in \mathcal{G}$. This allows to use Shor's Lemma to reduce the study of solution to a potentially much smaller number of equivalence classes.

Examples:

- Minimizing univariate $p(x)$ that satisfies $p(x)=p(-x)$ and hence $p(x)=q\left(x^{2}\right)$.
- Minimizing $p(x)$ over $x \in\{0,1\}^{n}$ such that p is S_{n}-symmetric and hence $p(x)=q\left(\frac{1}{n} \sum x_{i}\right)$ for some q.
- In coding, we can bound the best possible rate of a code with given distance (which is the logarithm of the independence number of the Hamming graph) by the ϑ function, which corresponds to degree 2 sos, and analyze it using symmetry which allows to reduce this SDP to an LP. A more sophisticated bound was given by looking at the degree 4 sos.

References

