Flag algebras and extremal combinatorics

Note: These are very rough scribe notes of what was covered by Pablo Parrilo. Please see the video for more complete coverage.

Look at the problem of certifying $p(x) \ge 0$ for *symmetric* polynomial *p*.

Example: Compute $\alpha(G)$ where *G* is the *Hamming weight graph* with vertices corresponding to $\{0,1\}^n$ and edges corresponding to pairs with Hamming distance at most *k*. In this case $\alpha(G)$ is the maximum size of an *error correcting code* of block length *n* and distance *k*.

1. Definition. Let \mathcal{G} be a group of linear transformations over \mathbb{R}^n . We say that a polynomial p is \mathcal{G} symmetric if $p(x) = p(\tau(x))$ for every $\tau \in \mathcal{G}$.

Digression to representation theory.

A *representation* is $\rho: \mathcal{G} \to GL(V)$ where *V* is a subspace which is homomorphic.

Example: *S*₂: group of permutations on set of two elements. We can write *S*₂ = {*e*, *g*} , $g^2 = e$ and *e* is the identity element.

Natural representation is $\rho: S_2 \to GL(\mathbb{R}^2)$ where $\rho(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\rho(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. That is $\rho(e)$ is the map $(x, y) \mapsto (x, y)$ while $\rho(g)$ is the map $(x, y) \mapsto (-y, x)$.

This representation has two invariant one dimensional subspaces $\{x = y\}$ and $\{x = -y\}$. Restricting it to these two subspaces gives the trivial representation and the *alternating* / *sign* representation where $\rho(g) = +1$ and $\rho(e) = -1$.

An *invariant subspace* of a representation $\rho: \mathcal{G} \to GL(V)$ is a subspace $W \subseteq V$ such that $\rho(GgW = W$ for all $g \in \mathcal{G}$. We say that an invariant subspace is *trivial* if W = V or $W = \{0\}$. An *irreducible representation (irrep)* is a representation without any non-trivial invariant subspace.

We say that two representations $\rho: \mathcal{G} \to GL(V)$ and $\rho': \mathcal{G} \to GL(V')$ are *equivalent* if there is an invertible linear transformation $T: V \to V'$ such that

$$\rho(g) = T^{-1} \rho'(g) T \tag{1}$$

for every $g \in \mathcal{G}$.

Example 2: S_3 - group of permutations on set of three elements. We can write $S_3 = \{e, s, c, c^2, cs, sc\}$ where in cycle notation s = (1, 2) and c = (1, 2, 3). The relations that this satisfies is $c^3 = e, s^2 = e$ and s = csc.

We can express the possible irreps in a Young tableus that satisfy the relation $n! = \sum d_i^2$.

Example 3: $\mathbb{C}_n = \{0, ..., n-1\}$ with addition modulo *n*. We can represent this in *n* ways with $\rho_k(j) = \omega^{kj}$ for $\omega = e^{2\pi i/n}$. (In Abelian group all irreps have dimension one.)

Convexity and symmetry

Suppose we want to minimize a univariate function $f \colon \mathbb{R} \to \mathbb{R}$ and suppose that it is *symmetric* in the sense that f(x) = f(-x). A priori that gives us no information about it, but if we add the condition that *f* is *convex* then we can deduce that it must have a global minimum at x = 0.

More generally, we say that $f: V \to \mathbb{R}$ is *symmetric* with respect to a group \mathcal{G} and a representation ρ if $f(\rho(g)x) = f(x)$ for all $g \in \mathcal{G}$.

2. Lemma. If *f* is symmetric w.r.t. G, ρ and convex then it always has a minimum *x* that satisfies the property that $x = \rho(g)x$ for every $g \in G$.

Proof. Given *x* which achieves the minimum of *f*, by symmetry and convexity, the same will hold for $x^* = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \rho(g)x$, but it is not hard to verify (**exercise**!) that the latter will satisfy the above property.

For a group \mathcal{G} and a representation $\rho: \mathcal{G} \to V$, we define the *fixed point subspace* of ρ to be $\{x \in V : x = \rho(g)x \forall g \in \mathcal{G}\}$. (Exercise: Verify that this is indeed a linear subspace.)

Example: Lovasz theta function

Consider the following convex relaxation for the independent set problem:

For an *n* vertex graph *G*, recall that the independent set number is defined as $\alpha(G) = \max \sum x_i$ over $x \in \{0,1\}^n$ such that $x_i x_j$ for all $i \sim j$ in *G*. We can relax this as $\vartheta(G) = \max \operatorname{Tr}(JX)$ over all p.s.d. matrices $X \succeq 0$ such that Tr(X) = 1, $X_{i,j} = 0$ for all $i \sim j$ and where *J* is the all 1's matrix.

For every *G*, the value $\vartheta(G)$ can be thought of as the maximum of a concave (in fact linear) function over a convex set and so also as minimizing a convex function. If the graph itself has symmetries then ϑ itself has symmetries and so its minimum is known to lie in some nice space. For example, if the graph is the cycle, then the minimum is achieved by a matrix *X* which is *circulant*.

Semidefinite programs and representations.

In sos programs the representations inherit the symmetry in the instance in a "nice form" which is that if $X \in \mathbb{R}^{n^d \times n^d}$ is a matrix representing the degree 2d sos solution and $\rho: \mathcal{G} \to GL(\mathbb{R}^n)$ is a representation with respect to the original function is symmetric, then if we let $\rho': \mathcal{G} \to GL(\mathbb{R}^{n^{\otimes d}})$ be the representation obtained by tensoring ρ then the value of X as a solution to the sos program equals the value of $\rho'(g)^\top X \rho'(g)$ for all $g \in \mathcal{G}$. This allows to use *Shor's Lemma* to reduce the study of solution to a potentially much smaller number of *equivalence classes*.

Examples:

- Minimizing univariate p(x) that satisfies p(x) = p(-x) and hence $p(x) = q(x^2)$.
- Minimizing p(x) over $x \in \{0,1\}^n$ such that p is S_n -symmetric and hence $p(x) = q(\frac{1}{n}\sum x_i)$ for some q.
- In coding, we can bound the best possible rate of a code with given distance (which is the logarithm of the independence number of the Hamming graph) by the θ function, which corresponds to degree 2 sos, and analyze it using symmetry which allows to reduce this SDP to an LP. A more sophisticated bound was given by looking at the degree 4 sos.

References