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1 In such a graph it can be shown
that with high probability the max-
imum clique will be size at least
(2− o(1)) log n but the simple greedy
algorithm only recovers a log n sized
clique and it is a longstanding open
problem to recover a clique of size
(1 + ε) log n for every constant ε > 0.

An integrality gap for the planted clique problem

The Planted Clique problem (sometimes referred to as the hidden clique
problem) is a central question in average-case complexity - where one
is interested in the computational complexity of solving typical (as
against worst-case) instances. The problem is rooted in the 1976 work
of Karp (Karp [1976]) that asked to find a maximum clique (i.e., set
of vertices that are all neighbors of one another) in a Erdös-Rényi
random graph G(n, 1

2 ) (where every edge is included independently
in the graph with probability 1

2 independently).1 Jerrum (Jerrum
[1992]) and Kucera (Kucera [1995]) defined Planted Clique as a
relaxation of this problem: for some ω ∈ {1, . . . , n}, find an ω clique
added to an Erdös-Rényi random graph G ∼ G(n, 1

2 ). That is, we
choose G as a random graph from G(n, 1

2 ), choose S to be a random
ω-sized subset of [n] and then add to G all the edges between pairs
of vertices in S. As the exercise below shows, the problem can be
solved by brute force search in quasi-polynomial time as long as
ω � log (n).

Figure 1: a random graph (grey) with a
planted clique (red)

1. Exercise (Max Clique in Random Graphs). Show that the max-
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2 The different variants of the planted
clique problem: Like other average-
case problems in NP, the planted clique
problem has three natural variants
of search, refutation, and decision. The
search variant is the task of recovering
the clique from a graph in which it was
planted. The refutation variant is the
task of certifying that a random graph in
G(n, 1

2 ) does not have a clique of size ω.
The decision problem is to distinguish
between a random graph from G(n, 1

2 )
and a graph in which an ω-sized clique
has been planted. The decision variant
can be reduced to either the search or
the refutation variant, but a reduction
between the latter two variants is not
known.

imum clique in a random graph is of size c log (n) with probabil-
ity at least 0.99. How small can c be? Use this observation to ob-
tain a nO(log (n)) time algorithm to find planted cliques of any size
ω � log (n).

In recent years, planted clique and related problems have found
applications to important questions in a variety of areas including
community detection (Hajek et al. [2015]), finding signals in molec-
ular biology (PS0 [2000]), discovering motifs in biological networks
(Milo et al. [2002]; Javadi and Montanari [2015]), computing Nash
equilibrium (Hazan and Krauthgamer [2009]; Austrin et al. [2013]),
property testing (Alon et al. [2007]), sparse principal component anal-
ysis (Berthet and Rigollet [2013]), compressed sensing (Koiran and
Zouzias [2014]), cryptography (Juels and Peinado [1998]; Applebaum
et al. [2010]) and even mathematical finance (Arora et al. [2010]).

One would expect finding added cliques to become easier with
increasing ω. Indeed, when ω > C

√
n log (n) for some large enough

constant C, one can recover the vertices of the added clique by simply
collecting the highest degree vertices. A more clever algorithm uses
the spectrum of the adjacency matrix of the graph to find added
cliques of size Θ(

√
n). The following exercise illustrates the idea for

the distinguishing2 variant of the problem.

2. Exercise (Detecting Planted Cliques using Spectral Norm of the
Adjacency Matrix). Let B(G) be the {±1}-adjacency matrix for graph
G, i. e., B(i, j) = +1 if {i, j} is an edge in G and −1 otherwise.

• Show that the maximum eigenvalue of B(G) for a random graph G
is at most Θ(

√
n) with probability at least 0.99.

• Show that the maximum eigenvalue of B(G) for G, a random
graph with an added clique of size ω is Ω(ω).

• Conclude that when ω > C
√

n for some large enough constant C,
the maximum eigenvalue of B(G) can be used to detect whether a
random graph has an added planted clique of size ω.

• Can you modify this procedure to give a polynomial time algo-
rithm that can distinguish between G which is random and G that
has an added clique size ω > ε

√
n for any constant ε > 0?

We note that an even simpler distinguishing algorithm can be
obtained by simply comparing the total number of edges, as when
ω �

√
n the expected number 1

2 (
ω
2 ) of edges we add will be larger

than the standard deviation
√
(n

2) of the total number of edges.
However, the spectral based algorithm can be generalized better
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3 Formally such results apply to the
incomparable refutation problem,
which is the task of certifying that
there is no ω-sized clique in a random
G(n, 1

2 ) graph. However, our current
knowledge is consistent with all three
variants having the same computational
complexity.

to the search problem, and is also a more insightful starting point to
the sos discussion.

Despite being intensely studied, state-of-the-art polynomial time
algorithm for the problem is essentially the one based on the exer-
cise above and works for ω = ε

√
n, for any constant ε > 0 (Alon

et al. [1998]). On the other hand, it is unlikely that lower bounds
for planted clique can be derived from conjectured separations in
worst-case complexity classes such as P 6= NP, precisely because it
is an average-case problem (Feigenbaum and Fortnow [1991]; Bog-
danov and Trevisan [2003]). As a result, our best evidence for the
difficulty of the problem comes from showing limitations on power-
ful classes of algorithms. In particular, since many of the algorithmic
approaches for this and related problems involve spectral techniques
and convex programs, limitations for these types of algorithms are
especially interesting. One such negative result was shown by Feige
and Krauthgamer [2003] who proved that a weaker hierarchy than
sos- namely, the nO(d)-time degree d Lovàsz-Schrijver semidefinite
programming hierarchy (LS+ in short) can only recover the added
clique if its size is at least

√
n/2d.3

In this chapter, we will find out if the SoS algorithm can help in
detecting planted cliques of size o(

√
n). While the answer will be

somewhat disappointingly negative, our investigation will illuminate
certain new aspects of the SoS algorithm. This would naturally lead
to the idea of looking at SoS and similar algorithms (i.e. those with
an associated proof system) as implementing a computationally
bounded version of classical Bayesian reasoning and allow us to
interpret “state” of an algorithm even when it fails to solve a given
computational problem. Such an interpretation will also illustrate
how the SoS algorithm is more powerful than other semidefinite
programming based methods such as the LS+ algorithm.

The integrality gap we prove in this section will show that the SoS
algorithm of degree d “thinks” that there is a > n1/2−c(d/ log (n))1/2

-
size clique in a random graph with high probability. For any d =

o(log (n)), the above bound on ω equals
√

n up to no(1) factors. As in
the case of Grigoriev’s theorem for Max 3XOR problem, this amounts
to constructing a degree d pseudodistribution supported on ≈ ω-
cliques in a random graph G. We encode a clique S ⊆ [n] as its
characteristic vector x ∈ {0, 1}n, where the condition of being a clique
corresponds to the constraint that xixj = 0 for every non edge {i, j}.
Formally, we will show the following result of Barak et al. [2016]:

3. Theorem (SoS Hardness for Planted Clique). Let d = d(n) be
some function. Then, there is an absolute constant c such that for ω =
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4 This intuition of correlations quickly
“dying out” as variables get further
away from one another is widely used
also outside of sos, and in particular
is key for many analysis of algorithms
such as belief propagation for constraint
satisfaction problems. Such correlation
decay can be shown formally for
underconstrained random 3SAT or
3XOR where there is a large number
of satisfying assignments, and so
there exists an actual probability
distribution over the assignments.
In our “overconstrained” regime there
will exist only one (in the planted
setting) or no solution (in the random
setting) and so we can only talk about
“Bayesian” pseudo-probabilities.
5 In contrast, if someone tells us that
17 is in S then that has a strong effect
on 17’s non-neighbors, and weak effect
on its neighbors. Note however that
the planted clique problem is only
non-trivial when ω � n and so every
vertex is much more likely to be outside
the clique than the other way around.

n
1
2−c(d/ log (n))1/2

and for large enough n, with probability at least 1− 1/n
over G ∼ G(n, 1

2 ), there is a degree d pseudodistribution µ over {0, 1}n

consistent with the constraints {xixj = 0} for every i 6∼ j in G such that
Ẽ ∑n

i=1 xi ≥ ω.

Planted Clique Versus Max 3 XOR

How should we construct a pseudodistribution that pretends that
there’s a ≈ ω-clique in a random graph? We could look back on the
proof of Grigoriev’s theorem to draw some inspiration. The construc-
tion of the pseudodistribution in case of Max 3XOR appears natural
in retrospect - in a sense, we find out the “hard” constraints imposed
by the input instance by performing a bounded width derivation and
choose the target pseudodistribution to be as random as possible
after forcing it to satisfy the hard constraints. In the Bayesian context
we can justify this via Jaynes’s maximum entropy principle. That
is, we start with the most uninformative prior of the uniform distri-
bution over {0, 1}n, and add the minimum constraints that we have
observed from the instance. (Of course if we truly derived all the
logical consequences of the instance then we would see that there is
no satisfying assignment, but we restrict ourselves to bounded width
derivation.)

This is possible in Max 3XOR because the effect of one subset of
variables on another is either extremely strong (if they are “nearby”
in the bipartite instance graph G) or essentially zero. For example,
if we have a 3XOR constraint x1 ⊕ x2 ⊕ x3 = 1 then knowing x1

and x2 completely determines the value of x3. However, if there
was no short chain of constraints linking x1, x2 and x3 then we can
think of x3 as being independent of x1, x2. Indeed, in Grigoriev’s
pseudo-distribution, for every subset S ⊆ [n], the expectation of
χS(x) = ∏i∈S(1− 2xi) was either equal to 0 or in {pm1}. If this was
an actual distribution over x ∈ {0, 1}n then since χS is {±1} valued
it means that either χS(x) is completely uniform or it is fixed to one
particular value.4

In contrast to the strong local effects we see for constraint satis-
faction problems, it turns out that for the Planted Clique problem,
every variable has a weak, but global effect on all the other variables.
Consider a random graph G in which a clique S of size ω has been
planted. If someone tells us that vertex 17 is not in S, this new in-
formation makes it slightly less likely that 17’s neighbors are in S
and slightly more likely that 17’s non-neighbors are in S. So, this
information has a weak global effect.5 This is in contrast to the strong

https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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6 It might seem a bit disconcerting to
talk of an expectation when with high
probability, the associated distribution
has support of size one: the added
planted clique. However, we will soon
move on to the setting of pseudodistri-
butions where we’ll be able to pretend
as if there is not one but many large
cliques in a random graph.

local effects that we see for constraint satisfaction problems such as
random 3XOR. This difference between the random Max 3XOR (and
other constraint satisfaction problems or CSPs) and the planted clique
problems means that some subtleties that can be ignored in setting of
random CSPs need to be tackled head-on when dealing with planted
clique.

Computationallly Bounded Bayesian Estimates for Planted
Clique

Let G(n, 1/2, ω) be the distribution over pairs (G, x) of an n-vertex
graphs G and a vector x ∈ Rn which is obtained by sampling a
random graph in G(n, 1/2), planting an ω-sized clique in it, and
letting G be the resulting graph and x the 0/1 characteristic vector
of the planted clique. Let f : {0, 1}(n

2) ×Rn → R be some function
that maps a graph G and a vector x into some real number f (G, x)
which we’ll write as fG(x). Now imagine two parties, Alice and Bob
(where Bob stands for “Bayesian”) that play the following game:
Alice samples (G, x) from the distribution G(n, 1/2, ω) and sends G
to Bob, who wants to output the expected value of fG(x). We denote
this value by ẼG fG.

If we have no computational constraints then it is clear that Bob
will simply output Ex|G fG(x), i. e., the expected value of fG(x)
where x is chosen according to the conditional distribution on x
given the graph G.6 In particular, the value ẼG fG will be calibrated in
the sense that

E
G∈RG(n,1/2,ω)

Ẽ
G

fG = E
(G,x)∈RG(n,1/2,ω)

fG(x) (1)

Now if Bob is computationally bounded, then he will not neces-
sarily be able to compute the value of Ex|G fG(x) even for a simple
function such as fG(x) = x17. Indeed, as discussed before, since with
high probability the clique x is uniquely determined by G, Ex|G x17

will simply equal 1 if vertex 17 is in the clique and equal 0 otherwise
and hence accurately computing Ex|G xi for all i corresponds to being
able to recover the clique. However, note that we don’t need to com-
pute the true conditional expectation to obtain a calibrated estimate!
Simplying outputting Ẽ x17 = ω/n will satisfy Equation Eq. (1).

However, calibration does require us to get certain correlations
right. Consider the function fG(x) = (vdegG(17)− n/2)(x17 − ω/n),
where vdegG(i) corresponds to the degree of the vertex i in the graph
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G. This function captures the covariance of the degree of the vertex
with the event that it is in the clique.

Naturally higher degree vertices are somewhat more likely to
be in the clique, but satisfying Eq. (1) with respect to this f means
that we must get this correlation right. This makes sense, clearly
Bob can compute a priori this correlation and so if his estimates do
not achieve it then they are clearly “leaving some information on
the table”. In particular this means that if we want to satisfy the
calibration condition with respect to this function f , then the value
ẼG xi should not be fixed to ω/n but rather be correlated with the
degree of xi.

4. Exercise. Show that if a pseudo-expectation operator G 7→ ẼG is
calibrated with respect to all functions f : {0, 1}(n

2) × {0, 1}n → R

that have the form fG(x) = g(G)xi where g : {0, 1}(n
2) → {0, 1}

is an arbitrary function then it must be that ẼG xi = Ex|G xi. In
particular this means that with high probability over G it holds that
ẼG xi ∈ {0, 1} for every i.

Pseudocalibration

The above discussion suggests that the pseudodistribution we con-
struct shouldn’t distinguish between a graph G drawn from G(n, 1

2 )

and a random G from G(n, 1
2 , ω). We can capture this by the notion

of being “pseudocalibrated for a function f ” as follows:

5. Definition (Pseudocalibration). A degree d pseudo expectation map
is a function that takes a graph G into a degree d pseudo-expectation
operator ẼG (or equivalently, a degree d pseudo-distribution µG).

Let f : {0, 1}(n
2) × {0, 1}n → R. A degree d pseudoexpectation map

ẼG is pseudocalibrated with respect to f if it satisfies:

E
G∈RG(n,1/2)

Ẽ
G

fG = E
(G,x)∈RG(n,1/2,ω)

fG(x), (2)

Note that Eq. (2) does not make sense for the estimates of a truly
Bayesian (i.e., computationally unbounded) Bob, since almost all
graphs G in G(n, 1/2) are not even in the support of G(n, 1/2, ω)!
Indeed, if we let fG(x) be the function that ignores x and is equal to
1 if G has a clique of size ≥ 100 log n and to 0 otherwise then clearly
no pseudo-expectation operator (which satisfies Ẽ 0 = 0) can satisfy
Eq. (2) for f . Yet considering this function f is somewhat “unfair” be-
cause a computationally bounded observer will not be able to compute
it. Hence we would want to that any pseudoexpectation we construct
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7 Where does the planted distribution
come from? The lower bound result
makes no mention of the planted
distribution G(n, 1/2, ω) and only
refers to an actual random graph.
Thus it might seem strange that we
base our pseudo-distribution on the
planted distribution via Eq. (2). >
One way to think about the planted
distribution is that it corresponds to a
Bayesian prior distribution on the clique.
Note that this is the maximum entropy
distribution on cliques of size ω, and
so it is a natural choice for a prior per
Jaynes’s principle of maximum entropy.
Our actual pseudo-distribution can
be viewed as correcting this planted
distribution to a posterior that respects
simple inferences from the observed
graph G.

be pseudocalibrated for every “simple” function — one that captures
the kind of reasoning that we expect a computationally bounded
Bayesian observer to be capable of. As we will see, once we restrict
to a (suitable notion of) simple functions, our pseudodistribution
will be well defined even for a random graph and hence will yield
estimates forthe probabilities over this hypothetical object (i.e., the
ω-sized clique) that does not exist.

The “pseudocalibration” condition Eq. (2) might seem innocent,
but it turns out to imply many useful properties. In particular is not
hard to see that it implies that for every simple strong constraint of
the clique problem - a function f such that f (G, x) = 0 for every x
that is a characteristic vector of an ω-clique in G - it must hold that
ẼG fG = 0.

6. Exercise. For every graph G, let pG be a degree d/2 polynomial
such that p(x) = 0 for every characteristic vector x of an ω-clique
in G. Prove that if a map G 7→ ẼG where ẼG is a degree d pseudo-
distribution operator is pseudo-calibrated with respect to the function
fG(x) = pG(x)2 then it must satisfy that ẼG pG = 0 for every graph
G.

But even beyond these “hard constraints”, Eq. (2) implies that the
pseudo-expectation satisfies many weak constraints as well, such as
the fact that a vertex of high degree is more likely to be in the clique
and that if i is not in the clique then its neighbors are less likely
and non-neighbors are more likely to be in it. We will explore these
consequences in exercises that follow shortly after describing the
pseudodistribution in the next section.

Constructing the Pseudodistribution

As before, we will specify our pseudodistribution by describing
the associated pseudoexpectation on a basis of low-degree func-
tions. As in the case of Grigoriev’s theorem, the fact that the pseudo-
distribution is over {0, 1}n forces ẼG f = ẼG m( f ) for any polynomial
f and m( f ) obtained by reducing f to a multilinear polynomial via
the relations {x2

i = xi}. Thus, it will be enough to specify Ẽ xS for
every |S| ≤ d, S ⊆ [n] where, as before, xS = Πi∈Sxi.

We will choose our pseudodistribution to be pseudocalibrated
for every low-degree function in both the graph G (seen as a (n

2)

indicator variables) and x with respect to the planted distribution
G(n, 1

2 , ω).7
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8 For every G and x, µplanted(G, x)
equals the probability that (G, x) is
obtained from G(n, 1/2, ω).

For any polynomial p(G, x) (identifying G with its adjacency
matrix in {0, 1}(n

2)), let degG(p) and degx(p) be the degrees of p in
G and x variables respectively. Finally, for any polynomial p(G, x),
let p(G, x)≤d,≤τ be the truncation of p obtained by dropping the
monomials of degree with degx exceeding d or degG exceed τ.

To satisfy the pseudocalibration requirement discussed above,
we define the mass function of the pseudodistribution µ(G, x) by
low-degree truncation of the planted distribution’s mass function
µplanted(G, x):8

µ(G, x) = µplanted(G, x)degx≤d,degG≤τ . (3)

In other words, the pseudodistribution is obtained by taking a
low-degree (in both G and x variables) truncation of the planted
probability distribution. As an exercise, please verify that this still
satisfies the normalization condition at least in expectation, in the
sense that EG∼G(n,1/2) ∑x∈{0,1}n µ(G, x) = 1. It is important to note
that most graphs G from G(n, 1

2 ) are not even in the support of the
planted distribution and thus, if we didn’t truncate µplanted(G, x), the
pseudodistribution will be concentrated on the tiny fraction of the
graphs in G(n, 1

2 ) that do have an actual large clique. The truncation
above, however, will curb this spiky behavior and at the same time
allow the pseudodistribution µ to mimic the low-degree behavior of
µplanted very well.

The above definition indeed gives us the pseudocalibration prop-
erty that we wanted:

E
G∈G(n,1/2)

Ẽ
G

fG = E
G∈G(n,1/2,ω)

fG (4)

for every f with degx( f ) ≤ d and degG( f ) ≤ τ. Indeed we can write
µplanted as a polynomial in G, x and write it as µplanted = µ + µ′ where
µ, as we defined it, corresponds to the monomials in this polynomial
of x-degree at most d and G-degree at most τ. Then the RHS of
Eq. (4) correspnds to 〈 f , µ〉+ 〈 f , µ′〉 where the inner product sums up
over all G, x and now we only need to use the following exercise:

7. Exercise. Let f : {0, 1}`+m → R be a polynomial on x ∈ {0, 1}`, y ∈
{0, 1}m of x-degree at most d and y-degree at most d′. Prove that for
every function χSχ′T = ∏i∈S(1− 2xi)∏j∈T(1− 2yj), if either |S| > d
or |T| > d′ then ∑x,y∈{0,1}`+m f (x, y)χS(x)χT(y) = 0.
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Explicitly calculating the polynomial

To obtain explicit expressions for the pseudoexpectations correspond-
ing to µ, it is helpful to work in a convenient basis for functions of
the graph G. We work with the parity/Fourier basis (this choice is
made as we’d like an orthonormal basis w.r.t. the random distribu-
tion G(n, 1

2 )) and derive explicit expressions for the pseudoexpecta-
tion values next.

For Ẽ = Ẽµ corresponding to µ defined above, we’ll choose
τ = Θ(d/ε2) and ω = Θ(n1/2−ε) and analyze the Ẽµ operator so
obtained.

ẼG[xS] for any S ⊆ [n] is a function of the graph G and thus, can
be expanded as:

Ẽ
G
[xS] = ∑

T⊆(n
2)

̂̃E
G
[xS](T)χT(G), (5)

where χT(G) = Πe∈T(1− 2Ge) and Ge ∈ {0, 1} is the eth element of
G’s adjacency matrix.

The next exercise asks you to compute the Fourier coefficients of
Ẽ[xS] from the definition above.

8. Exercise (Pseudocalibration Fixes Fourier Coefficients). Prove
the following explicit formula for the Fourier coefficients of the
pseudoexpectation defined above.

̂̃E[xS](T) =


(

ω
n
)|V(T)∪S| if |V(T)| ≤ τ

0 otherwise .
(6)

The above definition will incur a slight error in satisfing the clique
constraints (xixj = 0 if Ge = 0). This is not a big deal - one way to
correct this issue is to define a slightly more clever way of low-degree
truncation of µplanted. The next exercise explores this modification.

9. Exercise (Clique constraints). Let Ẽ be obtained by a truncation,
the degree of which depends on the monomials involved in the
following way:

̂̃E[xS](T) =


(

ω
n
)|V(T)∪S| if |V(T) ∪ S| ≤ τ

0 otherwise .
(7)

Show that with probability 1, if S ⊆ [n] of size at most d is not a
clique in G, then Ẽ[xS] = 0 for the Ẽ defined above.
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For x, the degree is decided by the degree of our pseudodistribu-
tion, which we will denote by d in the following. Choosing an upper
bound τ on degree of the function f (G, x) in the G variables is more
subtle and is decided based on a trade-off between two competing
factors: if we choose τ to be too small, the pseudodistribution will
not satisfy the positive semidefiniteness condition and if we choose
it to be too large, we will see that Ẽ[1] will have too high a variance
around 1. We will thus choose τ be the “goldilocks” value as we will
soon see.

The next exercise verifies that Ẽ so defined satisfies the normaliza-
tion condition.

10. Exercise (Normalization). Show that with high probability, Ẽ[1] =
1± n−Ω(ε) and Ẽ[∑i∈[n] xi] = ω · (1± n−Ω(ε)).

We have thus established that 1) Ẽ[1] ≈ 1, 2) Ẽ[∑i∈[n] xi] ≈ ω, and
3) Ẽ[xS] = 0 for every S ⊆ [n] which is not a clique in G.

Ẽ is Positive Semidefinite

What remains to argue is that the Ẽ defined above satisfies the posi-
tivity/positive semidefiniteness property.

11. Lemma (Positive-Semidefiniteness). With high probability over G
from G(n, 1/2), for τ = Θ(d/ε2) and ω = Θ(n1/2−ε) every polynomial p
of degree at most d satisfies,

Ẽ
G
[p(x)2] ≥ 0 (8)

Given the principled way we constructed the pseudoexpectation,
one would expect a proof of positive semidefiniteness that relies on
certain nice aspects of the planted distribution and how they play
with the random distribution. Unfortunately, we do not know of a
simple argument along these lines (but is an excellent open question
to find one!). The proof we present in the next section is delicate
and technical and involves an approximate orthogonalization of the
associated moment matrix.

The following exercise shows that at least our pseudo-distribution
is positive semidefinte “in expectation” and for polynomials that are
obtained as “simple” functions of the graph:

12. Exercise. Prove that if f : {0, 1}(n
2) × {0, 1}n → R has G-degree ≤ τ

and x-degree ≤ d/2 then EG∈G(n,1/2) ẼG f 2
G ≥ 0.
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The pseudo-distribution as Bayesian probabilities.

If we truncate to G degree 0 then we completely ignore the graph
and hence we would set the expectation Ẽ xi to be ω

n for every i. If
we consider functions with G-degree 1 then we start taking into
account the correlations between the degree of the vertex (which is
a linear function in the graph) and the probability that it is in the
clique, and hence slightly update the probabilities to increase the
likelihood of some vertices and decrease the others.

When we consider functions with G-degree 2 then we can also
take into account triangle statistics. Of course if we went all the way
to G-degree 3 log n then in a planted graph we would be able to
completely identify the vertices of the clique and in a random graph
the pseudo-distribution will stop making sense (as in that Ẽ 1 will
start having huge variance). Thus these pseudo distributions can be
thought of as gradually reducing our uncertainty as we spend more
and more time on the computation.

References

Combinatorial approaches to finding subtle signals in DNA sequences.,
volume 8, 2000.

Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a
large hidden clique in a random graph. In SODA, pages 594–598.
ACM/SIAM, 1998.

Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt
Rubinfeld, and Ning Xie. Testing k-wise and almost k-wise indepen-
dence. In STOC, pages 496–505. ACM, 2007.

Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key
cryptography from different assumptions. In STOC, pages 171–180.
ACM, 2010.

Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge.
Computational complexity and information asymmetry in financial
products (extended abstract). In ICS, pages 49–65. Tsinghua
University Press, 2010.

Per Austrin, Mark Braverman, and Eden Chlamtac. Inapproximability
of np-complete variants of nash equilibrium. Theory of Computing, 9:
117–142, 2013.



Boaz Barak and David Steurer 12

Boaz Barak, Samuel B. Hopkins, Jonathan A. Kelner, Pravesh Kothari,
Ankur Moitra, and Aaron Potechin. A nearly tight sum-of-squares
lower bound for the planted clique problem. IEEE Symposium on
Foundations of Computer Science, FOCS, 2016.

Quentin Berthet and Philippe Rigollet. Complexity theoretic lower
bounds for sparse principal component detection. In COLT, vol-
ume 30 of JMLR Workshop and Conference Proceedings, pages 1046–
1066. JMLR.org, 2013.

Andrej Bogdanov and Luca Trevisan. On worst-case to average-
case reductions for NP problems. In FOCS, pages 308–317. IEEE
Computer Society, 2003.

Uriel Feige and Robert Krauthgamer. The probable value of the lovász–
schrijver relaxations for maximum independent set. SIAM J. Comput.,
32(2):345–370, 2003.

Joan Feigenbaum and Lance Fortnow. On the random-self-reducibility
of complete sets. In Structure in Complexity Theory Conference, pages
124–132. IEEE Computer Society, 1991.

Bruce E. Hajek, Yihong Wu, and Jiaming Xu. Computational lower
bounds for community detection on random graphs. In COLT,
volume 40 of JMLR Workshop and Conference Proceedings, pages
899–928. JMLR.org, 2015.

Elad Hazan and Robert Krauthgamer. How hard is it to approximate
the best nash equilibrium? In SODA, pages 720–727. SIAM, 2009.

Hamid Haj Seyed Javadi and Andrea Montanari. The hidden subgraph
problem. CoRR, abs/1511.05254, 2015.

Mark Jerrum. Large cliques elude the metropolis process. Random
Struct. Algorithms, 3(4):347–360, 1992.

Ari Juels and Marcus Peinado. Hiding cliques for cryptographic
security. In SODA, pages 678–684. ACM/SIAM, 1998.

Richard M. Karp. The probabilistic analysis of some combinatorial
search algorithms. In Algorithms and complexity (Proc. Sympos.,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1976), pages 1–19. Academic
Press, New York, 1976.

Pascal Koiran and Anastasios Zouzias. Hidden cliques and the certi-
fication of the restricted isometry property. IEEE Trans. Information
Theory, 60(8):4999–5006, 2014.

Ludek Kucera. Expected complexity of graph partitioning problems.
Discrete Applied Mathematics, 57(2-3):193–212, 1995.



Proof, beliefs, and algorithms through the lens of sum-of-squares 13

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon. Network motifs: Simple building blocks of complex
networks. Science, 298(5594):824–827, 2002. doi: 10.1126/science.298.
5594.824. URL http://www.sciencemag.org/cgi/content/abstract/
298/5594/824.

http://www.sciencemag.org/cgi/content/abstract/298/5594/824
http://www.sciencemag.org/cgi/content/abstract/298/5594/824

	An integrality gap for the planted clique problem
	Planted Clique Versus Max 3 XOR
	Computationallly Bounded Bayesian Estimates for Planted Clique
	Pseudocalibration
	Constructing the Pseudodistribution
	Explicitly calculating the polynomial
	`3́9`42`"̇613A``45`47`"603A is Positive Semidefinite
	The pseudo-distribution as Bayesian probabilities.

