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Optimality of sum-of-squares

In this lecture, we show that sum-of-squares achieves the best possi-
ble approximation guarantees for every constraint satisfaction prob-
lems (CSPs) among all polynomial-size semidefinite programming
(SDP) relaxations (Lee et al. [2015]).

The first step is to formalize the notion of SDP relaxations for
constraint satisfaction problem. For simplicity, we restrict ourselves
to Boolean CSPs, that is, every variable takes values from the alpha-
bet {0, 1}. There are many equivalent for definitions for the kind of
relaxations we want to study. It turns out that the most convenient
definition for the purpose of our proof is in terms of certain certifi-
cates of nonnegativity, which generalize the notion of sum-of-squares
certificates.

1. Definition (subspace certificates). Let U be a linear subspace of
the set of real-valued functions on {0, 1}n. We say that f : {0, 1}n →
R has a U-certificate (of nonnegativity) if there exists functions
g1, . . . , gr ∈ U such that

f = g2
1 + · · ·+ g2

r . (1)

We can view the task of approximating a boolean constraint
satisfaction problem in terms of certifying the nonnegativity of a
collection of functions. For example, we can consider nonnegative
functions of the form

x 7→ max fG
0.878

− fG(x), (2)

where G ranges over all graphs and fG(x) is the function that counts
the number of edges cut by the bipartition x. The fact that degree-2
sos achieves approximation ratio 0.878 for Max Cut is equivalent
to the fact that this set of functions has degree-2 sos certificates of
nonnegativity.

The following definition formalizes what it means for a set of non-
negative functions to have small subspace certifcates of nonnegativity.

2. Definition (SDP size). Let F be a family of real-valued functions
on hypercubes. For n ∈ N, let Fn be the restriction of F to functions
on {0, 1}n. For a function s : N → N, we write F ∈ SIZESDP(s) if
there exists a constant C such that for every n ∈ N, there exists a
subspace U ⊆ R{0,1}n

of dimension at most C · s(n) such that every
function f ∈ Fn has a U-certificate of nonnegativity.
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1 To see that every nonnegative function
satisfies { f } ∈ SIZESDP(1) consider the
1-dimensional subspace spanned by the
function

√
f .

Since subspace certificates generalize sos certificates, any family F
of real-valued functions on hypercubes with degree-d sos certificates
satisfies F ∈ SIZESDP(nd).

The following theorem gives a partial converse to that statement.
For a function f : {0, 1}m → R, we define extensions( f ) to be the set
of functions g : {0, 1}n → R with n ≥ m such that g(x) = f (xS) for
some S ⊆ [n] with |S| = m. In other words, extensions( f ) consists of
all functions on hypercubes that compute f on a subset of input bits.

3. Theorem (Optimality of sum-of-squares). Let f : {0, 1}m → R.
Suppose extensions( f ) ∈ SIZESDP(nd) for some d ∈ N. Then, f has a
degree-10d sos certificate of nonnegativity.

For the theorem, it is important to pass to extensions because
every nonnegative function f on the hypercube satisfies { f } ∈
SIZESDP(1).1.

Theorem 3 shows the optimality of sos for CSPs because the
families F of functions that correspond to CSPs are closed under
extensions, so that extensions(F ) = F . For families F with this
closure property, the above theorem says that F ∈ SIZESDP(nd)

implies that F has degree-10d sos certficiates.

We remark that the proof of Theorem 3 also gives some bounds
for super constant d (i.e., d is allowed to depend on n). However, the
resulting bounds appear to be far from tight.

Positive matrix functions

The following lemma gives a characterization of SDP size that is
algebraically more concise. This alternative characterization will be
convenient for the purposes of the proof of Theorem 3. We say that
a matrix function Q : {0, 1}n → RN×N is positive if Q(x) � 0 for all
x ∈ {0, 1}n.

4. Lemma (positive matrix function). Let U be a linear subspace of
functions on {0, 1}n of dimension N. Let FU be the set of functions with a
U-certificate of nonnegativity. Then, there exists a positive matrix function
Q : {0, 1}n → RN×N such that

FU = {x 7→ Tr P ·Q(x) | P � 0} . (3)

To get some intuition about this lemma, observe that functions of
the form x 7→ Tr P ·Q(x) are indeed nonnegative because the product



Proof, beliefs, and algorithms through the lens of sum-of-squares 3

2 If µ is a probability distribution, then
the left-hand side of Eq. (5) is a sum of
nonnegative terms.

3 We define the degree of a matrix
valued function M(x) to the maximum
degree of an entry Mi,j(x).

of two positive semidefinite matrices has nonnegative trace. To prove
this inequality note that Tr AB = ‖

√
A
√

B‖2
F ≥ 0 for all A, B � 0.

Proof. Let h1, . . . , hN be a basis for U and let h : {0, 1}n → RN be the
vector-valued function h = (h1, . . . , hN). Note that every function
g ∈ U has a representation g(x) = 〈h(x), v〉 for v ∈ RN . Choose
Q such that Q(x) = h(x)h(x)T . Let f be any function with a U-
certificate of nonnegativity so that f = g2

1 + · · ·+ g2
r for g1, . . . , gr ∈ U.

Let v1, . . . , vr be the coordinates of these functions so that gi(x) =

〈h(x), vi〉 for all i ∈ [r]. Then,

f (x) = g1(x)2 + · · ·+ gr(x)2 =
r

∑
i=1
〈h(x), vi〉2 = Tr

(
r

∑
i=1

vivi
ᵀ

)
Q(x) .

(4)
We conclude f ∈ FU as desired.

Proof strategy

Let f : {0, 1}m → R be such that extensions( f ) ∈ SIZESDP(nd). We
are to show that f has a degree-10d sos certificate. To this end, we
will show that every 10d pseudo-distribution µ : {0, 1}m → R satisfies
Ẽµ f ≥ 0.

Fix n ∈ N large enough. Let Q : {0, 1}n → RN×N for N ≤ C · nd

be a positive matrix function such that every extensions x 7→ f (xS) of
f to {0, 1}n has a representation f (xS) = Tr PS · Q(x) as in Lemma 4.
Note that Ẽµ f = Ẽµ(xS)

f (xS) = ∑x µ(xS)Tr PSQ(x) for every S ⊆ [n]
with |S| = m. In the following, let S be a random subsets of [n] with
cardinality m. We will show that

E
S

∑
x

µ(xS)Tr PSQ(x) ≥ −ε , (5)

where ε > 0 tends to 0 as n grows. Note that the inequality Eq. (5)
would be easy to show if µ is a probability distribution.2 Hence,
the task of proving inequality Eq. (5) boils down to proving that
pseudo-distributions behave like actual probability distributions
in certain ways. (We have encountered many tasks of this kind in
earlier lectures.) It is instructive to consider the special case that the
function x 7→

√
Q(x) has degree at most d.3 In this case, Tr PSQ(x) =

‖
√

PS ·
√

Q(x)‖2 is a sum of squares of polynomials of degree at most
d.

5. Theorem (Learning low-degree positive matrix function). Let
f : {0, 1}m → R be such that extensions( f ) ∈ SIZESDP(nd) and let
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4 In this lecture we say that a function
f : {0, 1}m → R is bounded if there are
constant degree sos polynomials s, s′

such that −1 + s(x) = f (x) = 1− s′(x)
for every x ∈ {0, 1}m.

µ : {0, 1}m → R be a degree-10d pseudo-distribution. Then, there exists
C ≥ 1 (depending on f and µ) such that

E
µ

f ≥ E
S

E
µ(xS)

Tr PSQ̃(x) (6)

OLD

Lee et al. [2015] have shown that sos is optimal among all similar
sized SDP’s of certain form for constraint satisfaction problems. In
this lecture we will sketch the proof of a representative theorem.
We start with a definition. Let U be a subspace of the functions
from {0, 1}n to R. We say that a function g : {0, 1}n → R has a U
certificate of non-negativity if there are some u1, . . . , uk ∈ U such that
g(x) = ∑k

i=1 ui(x)2 for every x ∈ {0, 1}n. This is a generalization of
sos certificates, which correspond to the subspace of all polynomials
of degree at most d. We say that g is an n extension of f : {0, 1}m → R

if g(x) = f (xS) for some m-sized subset S ⊆ [n]. Clearly, if f is non
negative then every extension of it is also non-negative.

6. Theorem. Suppose that f : {0, 1}m → R is a bounded4 function
such that there is a degree d pseudo-distribution µ over {0, 1}m satisfying
Ẽµ f = −0.1. Then there is some n = mO(1) such that for every subspace U
of R{0,1}n

of dimension no(d), there is an n-extension g of f such that g does
not have a U certificate of non-negativity.

For example, the lower bound of Grigoriev [2001] yields a 3XOR
instance on m variables where no assignment satisfies more than
0.6 fraction of the constraints but there is a degree Ω(m) pseudo-
distribution that pretends to satisfy all of them. Thus if we let f (x)
equal 0.6 minus the number of satisfied constraints then we see that
we can turn this into a lower bound on 3XOR for general U proofs.
Note that passing to an extension is inherent, as if f is non-negative
we can always simply add the function

√
f to our subspace U .

The heart of the proof turns out to lower bound a notion known as
the PSD rank of a matrix related to all possible extensions of f .

7. Definition (PSD rank). Let M be an N × N′ non-negative matrix.
We say that M has PSD rank at most r if there are r× r PSD matrices
P1, . . . , PN , Q1, . . . , QN′ such that Mi,j = Tr(PiQj) for all i ∈ [N], j ∈
[N′].

Theorem 6 turns out to be a corollary of the following theorem:
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8. Theorem. Suppose that f : {0, 1}m → R is a bounded function such
that there is a degree d pseudo-distribution µ over {0, 1}m satisfying
Ẽµ f = −0.1. Then there is some n = mO(1) such that the (n

m) × 2n

matrix M where MS,x = f (xS) has PSD rank mΩ(d).

Theorem 6 follows from Theorem 8 by noting that if every n-
extension g of f has a U proof then we can express each entry of
this matrix as a product of PSD matrices whose image is in U . Thus
our focus from now on would be to prove Theorem 8.

Proof of the PSD rank lower bound

We now prove Theorem 8. Under our assumptions, the pseudo-
distribution µ satisfies

E
m

u f = ∑
w∈{0,1}m

µ(w) f (w) = 2m E
w∈{0,1}m

µ(w) f (w) ≤ −0.1 (7)

which in particular means that

E
S∼([m]

n )
E

x∈{0,1}n
µ(xS) f (xS) ≤ −0.12−m . (8)

Under our assumptions there are r × r PSD matrices P(S),Q(x)
such that f (xS) = Tr(P(S)Q(x)) and so we can write Eq. (8) as
Tr(MQ) ≤ −0.1 where M, Q are two r2n × r2n block matrices whose
xth blocks equal 2mµ(xS)P(S) and 2−nQ(x) respectively.

The main technical claim is that we can find Q̃ with the same trace
as Q of the form Q̃ = q(M)2 with q being an Õ(1) degree polynomial
with Tr(MQ̃) ≤ −0.05 · 2−m Since every entry of the xth block of M is
a polynomial in x of degree at most m, this means that there is some
degree Õ(m) matrix valued polynomial R such that

E
S∼([m]

n )
E

x∈{0,1}n
µ(xS)Tr(P(S)R2(x)) ≤ −0.05 · 20−m (9)

we then change the order of expectations and write this as

E
w∈{0,1}m

µ(w) E
x′∈{0,1}n−m ,S∼([m]

n )
Tr(P(S)R2(w, x′)) (10)

and this random restriction will turn out to imply that R is approxi-
mately a polynomial of degree o(d) in the variables w. Now for every
matix valued polynomial R of degree d′ and PSD matrix P, the value
Tr(PR2(w)) is a degree 2d′ sos polynomial (as can be evidenced by
writing it as ∑i,j(

√
PR(w))2

i,j) and hence we get a contradiction to the
fact that µ is a pseudo-distribution.
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