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Digression to boosting, experts, dense models, and their quan-
tum counterparts

There is a large collection of results across many fields such as:

• Duality in linear programming (Farkas [1902],Minkowski [1896])

• The Hahn-Banach theorem in functional analysis (Hahn [1927],Ba-
nach [1929])

• The minimax theorem in game theory (Neumann [1928])

• Regret minimization and expert learning (Hannan [1957], Little-
stone and Warmuth [1989])

• Boosting in machine learning (Schapire [1990], Freund and
Schapire [1995])

• The hard core lemma in computational complexity (Impagliazzo
[1995])

• The dense model theorem in additive combinatorics (Green and
Tao [2008],Tao and Ziegler [2008])

that all share the following characteristics:

• They appear initially counterintuitive

• They are incredibly useful

• They are not that hard to prove once you gather the nerve to
conjecture that they could be true. In fact, they can all proven by
some kind of a local search/improvements type of algorithm such as
best response, multiplicative weights or gradient descent.

To show optimality of sos we will need to use a result in this
framework, and specifically the generalization of such results into the
quantum or positivesemidefinite setting.

Regret minimization

Consider the following setting. There is some universe U of assets.
An investor strategy can be thought of as a distribution µ over the
assets (which we can think of as either describing the way to partition
the portfolio or as describing how to probabilistically sample a
single asset to invest in). At each time period t, the investor comes
up with a distribution µt, the universe comes up with a function
ft : U → [−1,+1] and profit to the investor is Ex∼µt ft(x). In the
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setting of regret minimization (also known as expert learning) our goal
is to come up with an investment strategy that would minimize the
loss we suffer compared to the best fixed strategy in hindsight µ∗. That
is, we wish to find a way such that if for t = 1, . . . , T we compute µt

based on f0, . . . , ft−1 then we will minimize the maximum of

t

∑
t=1

E
µ∗

ft −
T

∑
t=1

E
µt

ft (1)

over all distributions µ∗ over U.

The basic result in this area is the following:

1. Theorem (Regret minimization). For every parameter η, and every
choice of f1, . . . , ft and distribution µ∗ we can choose µt based only on
f1, . . . , ft−1 such that

T

∑
t=1

E
µt

ft ≤ (1 + O(η))
[ T

∑
t=1

E
µ∗

ft
]
+ 1

η ∆(µ∗‖µ1) (2)

where ∆(µ′‖µ) denotes the KL divergence of µ′ from µ.

In particular if we set µ1 to be the uniform distribution, then since
∆(µ∗‖µ1) ≤ log |U| we cam set η to be

√
log |U|/T and get that the

total regret is bounded by O(
√

T log |U|) which (for T � log |U|) is
sublinear in T.

Proof. We are going to simply let µt+1(x) be eaual to to Ztµt(x)2η ft(x)

where Zt =
(

Eµt 2η ft(x)
)−1

is a normalization factor.

Now let us upper bound the decrease in distance between µ∗ and
our current distribution by something related to the loss we suffer
compared to the optimum:

∆(µ∗‖µt+1)− ∆(µ∗‖µt) = E
x∼µ∗

log
(

µ∗(x)
µt+1(x)

)
− E

x∼µ∗

(
µ∗(x)
µt(x)

)
(3)

which equals

E
x∼µ∗

(
µt(x)

µt+1(x)

)
= E

x∼µ∗
log( 1

Zt2η ft(x) ) = log Z−1
t − η E

µ∗
ft . (4)

but since Z−1
t = Eµt 2η ft ≤ (η −O(η2))Eµt ft we get

∆(µ∗‖µt+1)− ∆(µ∗‖µt) ≤ η
(
(1− η)E

µt
ft − E

µ∗
ft
)

. (5)

The telescopic sum of Eq. (5) over all t from 1 to T yields the
theorem.
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The proof of Theorem 1 actually yields more than just the state-
ment. In particular the following two points are important:

• Our strategies µ1, . . . , µt are simple in the sense that they are com-
posed of the initial prior µ1 reweighed by “few” of the functions
f : U → [0, 1].

• The complexity of our strategy can be controlled by the KL dis-
tance from our prior to the optimal distribution. That is, if there
were only few bits of information that we were missing, then there
is a simple strategy that is nearly optimal.

This is a general (and very useful) phenomena that simple tests
can be fooled by simple distributions (see, e.g., Trevisan et al.
[2009]). In particular, the above proof establishes the following theo-
rem:

2. Theorem (Simple tests can be fooled by simple distributions:
classical version). Let F be a collection of test functions mapping some
universe U to [−1, 1], and let µopt, µprior be some distribution over U. Then
there exists a distribution µ such that

E
µopt

f − E
µprior

f < ε (6)

for every f ∈ F and µ is simple in the sense that it is obtained by
reweighing µprior using a function proportional to ε∑t

i=1 fi where t =

∆(µopt‖µprior)poly(1/ε).

Quantum version

We can extend the above observations to the quantum setting. Suppose
that now the investor strategy is a quantum state ρ (i.e., psd matrix
of trace 1) on a system with the universe of states U, and the gain
is now the probability that ρ passes some measurement which is a
|U| × |U| matrix M satisfying 0 � M � I. The same algorithm works
where we now use ρt+1 as proportional to ρteηMt . This is known
as the matrix multiplicative weights algorithm (e.g., see Arora et al.
[2012]). A matrix exponential can be computed using the power
series for the exponential (or by keeping the same eigenbasis and
exponentiating the eigenvalues). The same analysis works except
that we now replace the KL divergence of µopt and µprior by the
corresponding quantum relative entropy which corresponds to the
von Neummann entropy of the states. In particular we can get the
following result:
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3. Theorem (Simple tests can be fooled by simple distributions:
classical version). Let F be a collection of quantum measurements
over a system with universe of states U, where for every f ∈ F , − IdU �
f � + IdU where IdU denotes the |U| × |U| identity matrix and � denotes
spectral domination. Let ρopt, ρprior be two density matrices over U (i.e.,
|U| × |U| psd matrices with trace 1). Then there exists a density ρ such that

Tr(ρ f ∗)− Tr(ρopt f ∗) < ε (7)

for every f ∈ F and ρ is simple in the sense that it is obtained by
reweighing ρprior using a function proportional to ε∑t

i=1 fi where t =

∆(ρopt‖ρprior)poly(1/ε) and ∆(ρ‖σ) denotes the quantum relative
entropy Tr(ρ(log ρ− log σ)).
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