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1 Even considering the case that the
am’s are a union of two orthonormal
bases, such as the standard and Fourier
one, already gives rise to many of
the representational advantages and
computational challenges.

Application: Sparse coding / dictionary learning

The dictionary learning / sparse coding problem is defined as follows:
there is an unknown n×m matrix A = (a1| · · · |am) (think of m = 10n).
We are given access to many examples of the form

y = Ax + e (1)

for some distribution {x} over sparse vectors and distribution {e}
over noise vectors with low magnitude.

Our goal is to learn the matrix A, which is called a dictionary.

The intuition behind this problem is that natural data elements are
sparse when represented in the “right” basis, in which every coordi-
nate corresponds to some meaningful features. For example while
natural images are always dense in the pixel basis, they are sparse in
other bases such as wavelet bases, where coordinates corresponds to
edges etc.. and for this reason these bases are actually much better to
work with for image recognition and manipulation. (And the coor-
dinates of such bases are sometimes in a non-linear way to get even
more meaningful features that eventually correspond to things such
as being a picture of a cat or a picture of my grandmother etc. or at
least that’s the theory behind deep neural networks.) While we can
simply guess some basis such as the Fourier or Wavelet to work with,
it is best to learn the right basis directly from the data. Moreover, it
seems that in many cases it is actually better to learn an overcomplete
basis: a set of m > n vectors a1, . . . , am ∈ Rn so that every example
from our data is a sparse linear combination the ak’s.1

Olshausen and Field [1997] were the first to define this problem -
they used a heuristic to learn such a basis for some natural images,
and argued that representing images via such an dictionary is some-
what similar to what is done in the human visual cortex. Since then
this problem has been used in a great many applications in compu-
tational neuroscience, machine learning, computer vision and image
processing. Most of the time people use heuristics without rigorous
analysis of running time or correctness.

There has been some rigorous work using a method known as
“Independent Component Analysis” (Comon [1992]), but that method
makes quite strong assumptions on the distribution {x} (namely
independence). The work of Wang et al. [2015] has given rise to a
different type of rigorously analyzed algorithms based on linear
programming, but these all required the vector x to be very sparse—
less than

√
n nonzero coordinates. The sos method allows recovery in
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Figure 1: A dictionary for natural
images. This is a set of 256 vectors that
offer sparse representation of 8 by 8

pixel patches of natural image. Image
taken from Mairal et al. [2008]

Figure 2: Using dictionary learning to
remove overlaid text from images. The
authors used a dictionary learned from
natural images and then removed text
from the image by making a “low pass
filter” over this dictionary, see Mairal
et al. [2009]



Proof, beliefs, and algorithms through the lens of sum-of-squares 3

2 The assumption on the norm is
without loss of generality while some
type of incoherence can be shown to be
necessary for recovery of the dictionary,
regardless of computational issues.

3 It can be shown that some bound on
the correlation between two coefficients
xi and xj is necessary for recovery. For
example, it is a good exercise to show
that if xi = xj always then there are
two dictionaries A, A′ with distinct set
of columns such that the distributions
y = Ax and y′ = A′x are identical.

the much denser case where x has up to εn nonzero coordinates for
some ε > 0.

From tensor decomposition to dictionary learning

Suppose that A = (a1| · · · |am) is a dictionary. For simplicity, we
assume that ‖ai‖ = 1 for all i, and that the ai’s are incoherent in the
sense that 〈ai, aj〉 = o(1) for all i 6= j.2 Now suppose that we are
given many examples y1, . . . , yM of the form yi = Axi + e where
x1, . . . , xM are independently sampled from some distribution D over
sparse (or nearly sparse) vectors in Rm and e is sampled from a noise
distribution with small magnitude. In fact, to simplify things further,
for the sake of the current discussion, we will ignore the noise and
assume that yi = Axi + e. We will also assume that the distribution on
the coefficients x is symmetric, in the sense that P[x] = P[−x] and in
particular E m(x) = 0 for every square-free monomial m. This is not
without loss of generality but is a fairly natural assumption on this
disrtribution.

Consider the empirical tensor T̂ = 1
M y⊗4

i . If M is large enough, we
can assume that it is essentially the same as the expected tensor

T = E y⊗4 = E(Ax)⊗4 . (2)

We will attempt to recover the vectors a1, . . . , am by doing a tensor
decomposition for T. A priori this might seem like a strange ap-
proach since the tensor T is not going to be proportional to ∑m

i=1 a⊗4
i .

Indeed, by expanding out we can see that this tensor is going to be of
the form

T =
m

∑
i=1

(E x4
i )a⊗4

i + O(1) ∑
1≤i,j≤m

(E x2
i x2

j )a⊗2
i a⊗2

j (3)

where we used the fact that the odd moments of x vanish.

Now since x is supposed to be a vector with εm nonzero coordi-
nates, let’s consider the simple case where

xi is equal to ±1 with probability ε and is equal to 0 otherwise and
that the distribution is pairwise independent.3 In this case, E x4

i = ε and
E x2

i x2
j = ε2.

Now the incoherence assumption implies that the n2 × n2 matrix

(∑
i

a⊗2
i )⊗2 (4)
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will have spectral norm which is O(1). Hence the tensor T will have
the form

T = ε
m

∑
i=1

a⊗4
i + O(ε2)T′ (5)

where T′ is a 4-tensor that when considered as an n2 × n2 matrix
has O(1) spectral norm. Note that the spectral norm of ∑m

i=1 a⊗4
i So

if ε � 1 then what we need is a tensor decomposition algorithm
that allows for noise that is small in spectral norm. Note that this is a
much stricter condition (in the sense of allowing more noise) than the
standard notion of the noise being small when considered as a vector
(which corresponds to being small in Frobenius norm). Luckily, the sos
based tensor decomposition algorithms can handle this type of noise.
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