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1 This problem is also sometimes known
as the problem of computing the
injective tensor norm, see (Harrow and
Montanaro [2010]).

SOS and the unit sphere: Sparse vectors, tensor decomposition,
dictionary learning, and quantum separability

So far our main focus has been on optimizing polynomials over the
Boolean cube, but as we’ve seen, the sos algorithm can be applied in
more general settings. In particular several very interesting problems
can be phrased as relate to the task of maximizing a polynomial
over the unit sphere. That is, given some polynomial p : Rn → R,
compute or approximate max‖x‖=1 p(x) and/or find an input x that
(approximately) achieves this maximum.1

Some examples that we will discuss include the following:

Tensor PCA and tensor decomposition

In principal component analysis (PCA) we are given samples
x1, . . . , xm of some distribution X over Rn, and want to find the direc-
tion v ∈ Rn that maximizes ∑i,j vivj Mi,j where Mi,j =

1
m ∑m

k=1 xk
i xk

j .
The idea is that if X has the form v0 + Y with v0 ∈ Rn and Y a mean
zero “noise variable” then E XX> = v0v>0 and hence we expect the
direction v that maximizes this correlation to be proportional to v0.

PCA only involves maximizing a quadratic polynomial which
amounts to an efficiently solvable maximum eigenvalue computation.
However, if for example X is a mixture with equal weights of two
distributions of the form v0 + Y and v1 + Y′ (where v0, v1 are unit
vectors, and assume they are orthogonal for simplicity) then one
can see that E XX> would be proportional to the identity linear
operator on the subspace Span{v0, v1}. Hence, even if we had an
infinite number of samples and could get the expectation of the
second moment matrix E XX> precisely, we would still not be able
to recover v0 and v1 but rather only the subspace that they span.
However, it can be shown that in this case v0 and v1 will be the only
two global maximizers of ∑Ti,j,k

xixjxk where Ti,j,k = E XiXjXk. So,
recovering these centers reduces to maximizing this polynomial.

More generally the tensor PCA problem (see (Richard and Monta-
nari [2014])) is defined as follows: we are given the d level moments
E X⊗d of some random variable X over Rn, and our goal is to find a
vector x maximizing the value of p(x) = E〈X, x〉d. It is an extremely
useful generalization of PCA though unfortunately it is NP hard on
average.

If tensor PCA is the higher degree analog of computing the max-
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2 This viewpoint of tensor decomposi-
tion being a generalization of tensor
PCA to multiple vectors is somewhat
inaccurate. The two problems are some-
what orthogonal. Tensor decomposition
generalizes the problem of finding the
smallest matrices B and C such that
A = BC for a given matrix A.

imum eigenvalue, the tensor decomposition problem (see (Kolda
and Bader [2009])) is the higher degree analog of singular value de-
composition. Namely, given some tensor T ∈ Rnd

we want to find the
smallest r and dr n-dimensional vectors {vi,j}i∈[r],j∈[d] so we can write
T as ∑r

i=1 vi,1 ⊗ · · · ⊗ vi,d. This is an incredibly useful primitive and
many of the known algorithms and heuristics for it are obtained by
iteratively running subroutines for tensor PCA and then “peeling off”
the resulting vectors.2

Finding sparse vectors in subspaces

In the sparse vector problem we are given an n dimensional sub-
space V ⊆ Rm and want to find the nonzero vector v ∈ V that is the
sparsest possible, in the sense of having as few nonzero entries as pos-
sible (or in the sense that a few of the entries have large magnitude
and the rest very small one). This is a natural problem, that can be
thought of as a continuous variant of finding the shortest codeword
in a linear code. It also arises in a variety of applications (including
the sparse coding and small set expansion applications mentioned
below), see Demanet and Hand [2014] . In particular in the context of
compressed sensing certifying that a subspace does not contain a sparse
vector is closely related to certifying the restricted isometry property
(Candès and Tao [2005]) of subspaces.

The sparse vector problem does not immediately translate into
maximizing polynomial over the sphere, but it turns out that sparse-
ness of a vector v can be approximated by the relation of ‖v‖q/‖v‖p
for q > p. Alas, there appears to be a subtle tradeoff between the
quality of this approximation and the tractability of computing this
ratio. For example, for p = 1 and q = ∞ this can be efficiently com-
puted (exercise) but only yields an Õ(

√
n) approximation. One can

get very good approximation guarantees by considering p = 1 and
q = 2 but no efficient algorithm is known for this case. For p = 2 and
q = 4 the problem becomes one of computing max‖x‖2=1 p(x) where

p(x) = ‖Ax‖4
4 and A : Rn → Rm is a generating matrix for V. It turns

out that this formulation yields non-trivial guarantees, and while it is
NP hard in general, it can be efficiently computed via SOS in several
important cases.
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3 Often we consider also A’s that are
not bases of Rn but merely span it, and
hence also consider the case |A| > n
which is known as the overcomplete case.

4 Quantum states are generally complex
vectors but essentially all of their
interesting phenomena already arise
in the real case in which they can
be thought of as “probabilities with
negative numbers”. In this lecture we
will restrict attention to the real case but
everything we say can be generalized
to the complex case by interpreting
v> as a the complex adjoint of v and
interpreting quantities such as x2 as
xx> = |x|2.
5 Actually this is the definition for
a state that is both symmetric and
separable: a separable state would have
the form ww′> for some w, w′. In other
words, a separable state on an M2 state
system can be interpreted as a rank
one M × M matrix while we make
the additional requirement that this
matrix is symmetric (or Hermitian
in the complex case). We restrict to
the symmetric case for notational
convenience and easier relation to other
problems though it does not make
much of a difference.

Sparse coding

In the sparse coding problem (also known as dictionary learning) we
are again given samples x1, . . . , xm of some distribution over Rn and
our goal is to find a basis A = {a1, . . . , an} for Rn which maximizes
the average sparsity of the vectors {(〈a1, xi〉, . . . , 〈an, xi〉)}i=1,...,m.3 The
intuition behind this is that the sparse representation is often the
“right” one, just as sounds tend to be sparser when represented in the
Fourier base, images in the Wavelet base, etc. . . . Indeed, while for
a generic basis A = {a1, . . . , an}, a sample x would have most of the
values 〈ai, x〉 be of similar magnitude, in a sparse representations we
can interpret the ai’s as meaningful features that are turned on or off
depending on this magnitude.

Indeed, Olshausen and Field [1997] suggested that sparse coding
may be used as a strategy for the visual cortex and many deep neural
networks use sparse coding as a way to generate their bottom-most
layer. One way to solve the sparse coding problem is to try to recover
the elements of A one vector at a time by trying to find sparse vectors
in the subspace V = Image(X) of Rm where X is the m× n matrix
whose columns are x1, . . . , xm.

Quantum information theory, quantum entanglement and
QMA(2)

In quantum information theory, a system with N classical states (such
as a system of log n bits) is modeled as an N × N positive semidefinite
matrix ρ of trace 1 known as the density matrix of the state. A classical
state, which can be thought of as a distribution (p1, . . . , pN) over
the N different outcomes corresponds to the special case when ρ

is diagonal. A quantum pure state corresponds to the case where ρ

is rank one- ρ = vv> for some unit vector v ∈ RN . A mixed state
corresponds to the more general case where the matrix is not rank
one. Note that by singular value decomposition, any mixed state ρ

can be written as ρ = ∑N
i=1 piviv>i where the vi’s are unit and the pi’s

are non-negative and sum up to one.4

If we have two systems each of M states, then we can think of the
combined system as a system of N = M2 states (e.g., two one-bit
systems are the same as a single two-bit system). One of the most
mysterious phenomena of quantum states is that they can create
entanglement between the different subsystems. A pure state v ∈ RN

is separable (i.e., non entangled) if v = ww> for some w ∈ RM.5 In
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other words the density matrix has the form w⊗4. A mixed state ρ is
separable if it is a convex combination of pure separable states. That
is, ρ = ∑i piw⊗4

i for non-negative pi’s that sum of up to one.

One of the ways that the complexity of entanglement is manifested
is that it is NP hard to determine if a state is separable or not. But
one can ask how hard is it to approximate. A quantum measurement
on an N-state system is a p.s.d. N × N matrixM such thatM � I.
The probability thatM accepts a state ρ is simpy 〈M, ρ〉 = Tr(Mρ).
(Can you see why this number is always between zero and one?.)
Two states ρ, ρ′ are identical if and only if they are accepted with the
same probability for all possible measurements (exercise). We say
that a state ρ is ε-separable if there is some separable ρ′ such that
|Tr(Mρ) − Tr(Mρ′)| ≤ ε for all measurementsM. The quantum
separability problem with parameter ε is to distinguish, given a density
matrix ρ, between the YES case that ρ is separable and the NO case
that ρ is not ε separable. Assuming the exponential time hypothesis,
the quantum separability problem requires at least NΩ(log N) time for
every constant ε > 0 (Harrow and Montanaro [2010]). Doherty et al.
[2004] proposed using sos for this problem, but we still do not know
the degree required for this problem in the worst-case. Brandão et al.
[2011] showed that it does work in O(log N) degree if we consider
a relaxed notion of ε-separability that only restricts attention to
particular types of measurements (known as local operations and
one-way communication or one-way LOCC).

A related problem is the Best Separable State (BSS) problem where
one is given a measurementM and paramters 1 > c > s > 0 as input
and needs to distinguish between the case that there is a separable
state ρ with Tr(Mρ) ≥ c and the case that every separable state ρ

satisfies Tr(Mρ) ≤ s. (A natural setting of parameters is c = 1 and
s = 1− ε.) This problem is also known as finding the acceptance prob-
ability of a quantum arthur merlin verifier with two provers, since we
can think ofM as a verfiying algorithm that receives two quantum
states from two provers that are guaranteed to be non-entangled. A
quasipolynomial time algorithm for this problem would correspond
to placing QMA(2) in EXP while the best known upper bounds is
QMA(2) ∈ EE = Dtime(2O(N)) (in this problem N corresponds to 2n

where n is the number of qubits in this proofs). The problem of deter-
mining the complexity of QMA(2) is of intense interest to quantum
information theorists and recently University of Maryland’s QuiCS
center held a weeklong workshop dedicated solely to this problem.

It is not hard to prove that there is always a pure state maxi-
mizing the acceptance probability of any measurementM and

http://qma2016.quics.umd.edu/
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6 Once again, recall that we restrict
attention to the real symmetric case. In
the literature this problem is typically
written as maximizing Tr(M(x ⊗
y)(x ⊗ y)∗) over all unit complex x, y
or in quantum notation maximizing
〈x, y|M|x, y〉.

hence the BSS problem corresponds to finding the maximum of
p(x) = Tr(M(xxᵀ)⊗2) over all unit vectors x.6

What does this have to do with sos?

It turns out that all these problems share similar characteristics:

• They are NP hard to solve exactly in the worst-case. Indeed, that’s
true for almost all problems involving tensors (Hillar and Lim
[2013]).

• The algorithm with the best known rigorous guarantees for these
problems is the sos hierarchy.

• Often we can prove that the sos algorithm provides non-trivial
guarantees in the worst-case and/or average-case setting that go
beyond what other algorithms can achieve.

• We typically do not have tight bounds on the performance of the
sos algorithm for these problems in neither the worst-case nor the
average-case setting.

• Some of these problems have natural heuristics that people apply
in practice. More often than not we do not know how to analyze
the performance of thee heuristics.

Beyond these superficial similarities, it turns out that there are
some deep and fascinating technical connections between these
problems as well as other important questions in theoretical CS
such as the Unique Games Conjecture Khot [2002] and the Log Rank
Conjecture Lovász and Saks [1988] . We will see some of these results
and connections in the next lectures.

References

Fernando G. S. L. Brandão, Matthias Christandl, and Jon Yard. A
quasipolynomial-time algorithm for the quantum separability
problem. In Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
343–352, 2011. doi: 10.1145/1993636.1993683. URL http://doi.acm.
org/10.1145/1993636.1993683.

Emmanuel J. Candès and Terence Tao. Decoding by linear program-
ming. IEEE Trans. Information Theory, 51(12):4203–4215, 2005.

http://doi.acm.org/10.1145/1993636.1993683
http://doi.acm.org/10.1145/1993636.1993683


Boaz Barak and David Steurer 6

Laurent Demanet and Paul Hand. Scaling law for recovering the
sparsest element in a subspace. Information and Inference, page
iau007, 2014.

Andrew C Doherty, Pablo A Parrilo, and Federico M Spedalieri.
Complete family of separability criteria. Physical Review A, 69(2):
022308, 2004.

Aram Wettroth Harrow and Ashley Montanaro. An efficient test for
product states with applications to quantum merlin-arthur games.
In FOCS, pages 633–642. IEEE Computer Society, 2010.

Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are
NP-hard. J. ACM, 60(6):Art. 45, 39, 2013. ISSN 0004-5411. doi:
10.1145/2512329. URL http://dx.doi.org/10.1145/2512329.

Subhash Khot. On the power of unique 2-prover 1-round games.
In IEEE Conference on Computational Complexity, page 25. IEEE
Computer Society, 2002.

Tamara G Kolda and Brett W Bader. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009.

László Lovász and Michael E. Saks. Lattices, möbius functions and
communication complexity. In FOCS, pages 81–90. IEEE Computer
Society, 1988.

Bruno A Olshausen and David J Field. Sparse coding with an overcom-
plete basis set: A strategy employed by v1? Vision research, 37(23):
3311–3325, 1997.

Emile Richard and Andrea Montanari. A statistical model for tensor
PCA. In NIPS, pages 2897–2905, 2014.

http://dx.doi.org/10.1145/2512329

	SOS and the unit sphere: Sparse vectors, tensor decomposition, dictionary learning, and quantum separability
	Tensor PCA and tensor decomposition
	Finding sparse vectors in subspaces
	Sparse coding
	Quantum information theory, quantum entanglement and QMA(2)
	What does this have to do with sos?

