
Proof, beliefs, and algorithms through the lens of sum-of-squares 1

Tensor decomposition via sum of squares

One of the most basic tools in data analysis is least squares regression.
The basic setting is where we are given points v1, . . . , vm ∈ R2

and we wish to find the line L that minimizes the sum of square
distances of the vi’s to L. More generally, we can think of case that
v1, . . . , vm ∈ Rn and we wish to find a k dimensional subspace L
that minimizes the sum of squares of distances to L. Another way
to think about this is that we are given the matrix M = ∑m

i=1 viv>i
and we want to find a rank r matrix L = ∑r

i=1 wiw>i that minimizes
‖M− L‖2

F (where ‖A‖F = Tr(AA>)1/2 denotes the Frobenius norm of a
the matrix A).

This problem can be efficiently solved by doing a singular value
decomposition (SVD) of the p.s.d. matrix M as M = ∑n

i=1 λiwiw>i
and taking the vectors corresponding to the largest k eigenvalues.
However, SVD is not always sufficient to recover information we
are interested in it. For example, if the vi’s come from two separate
“clusters” centered at w1 and w2 respectively, then SVD can recover
the subspace Span{w1, w2} but not the individual centers.

The underlying difficulty comes from the fact that very different
configurations of vectors v1, . . . , vm can yield the same second mo-
ment matrix ∑ viv>i . It turns out that in many cases one can break
this symmetry by looking at the third (or higher) moment matrix
∑i v⊗3

i . This suggest the following task of tensor decomposition:

1. Definition. Let T ∈ Rnd
be a tensor. A rank r decomposition of T is a

set of vectors {ai,j}i∈[r],j∈[d] such that

T =
r

∑
i=1

ai,1 ⊗ · · · ⊗ ai,d (1)

where for v ∈ Rn and w ∈ Rm, v⊗ w is the mn dimensional vector
where (v⊗ w)i,j = viwj.

The rank of a tensor T is the minimum r such that T has a rank r
decomposition. Let ‖·‖ be some norm on Rnd

. An ε-approximate rank
r decomposition of T w.r.t. the norm ‖·‖ is a set of vectors as above
such that

‖T −
r

∑
i=1

ai,1 ⊗ · · · ⊗ ai,d‖ ≤ ε‖T‖ (2)

The tensor decomposition problem is to recover, given a rank r tensor
T, a rank r decomposition of T. Noisy tensor decomposition is the
task of recovering an approximate decomposition of T when such a
decomposition exists. Tensor decomposition is an extremely useful



Boaz Barak and David Steurer 2

primitive Kolda and Bader [2009] but unfortunately it is NP-hard
in general (Hillar and Lim [2013]). However, there are certain con-
ditions under which a decomposition can be recovered, and the sos
algorithm turns out to be extremely useful in this setting.

Classical tensor decomposition algorithms

While tensor decomposition is a hard problem in general, there are
algorithm that succeed for it in certain regimes. The philosophy
behind them is that a la Halevy et al. [2009], a sufficient amount of
data can compensate for computational difficulty. Specifically in the
context of tensor decomposition the data is the tensor T ∈ Rnd

and so
we have a “blessing of dimensionality” where the problem actually
becomes easier as d grows for a fixed rank r.

Let’s restrict attention to the symmetric noiseless case, where the
tensor T has a decomposition of the form T = ∑r

i=1 a⊗d
i . Note that

a1, . . . , ar can be described using rn numbers, and so one might hope
to be able to recover these from the nd dimensional tensor as long
as r � nd−1. Indeed, under certain natural conditions this would
be possible information theoretically. However, known efficient
algorithms require (in addition to other conditions) the rank r to be
much smaller.

A classical algorithm, attributed to Jennrich (Harshman
[1970],Leurgans et al. [1993]) can recover the decomposition in the
case that d = 3 and the vectors are a1, . . . , ar are linearly independent
(and so in particular r < n). It works as follows:

2. Algorithm (Jennrich’s tensor decomposition). The input is a 3-
tensor T ∈ Rn3

such that T = ∑r
i=1 a⊗3

i for linearly independent
a1, . . . , ar. For simplicity assume that the ai’s are orthogonal to one
another. (We will see how to relax this assumption later.) Compute a
decomposition of T as follows:

1. Pick v ∈ Rn at random, and compute M = Tv, where we think of
T here as an n2 × n matrix.

2. Do a singular value decomposition of M = ∑r′
i=1 λiwiw>i .

3. Solve a least squares problem to find the α1, . . . , αr that minimize
‖T − ∑r

i=1 αiw⊗3
i ‖

2
2. (Note that the only unknown here are the

variables α1, . . . , αr.)



Proof, beliefs, and algorithms through the lens of sum-of-squares 3

To see that this algorithm works, note that

M =
r

∑
i=1
〈ai, v〉aia>i . (3)

and so since the ai’s are orthogonal this is going to be a singular
value decomposition. Moreover, since v as random the values 〈ai, v〉
are going to be distinct with probability one, and hence this singular
value decomposition is unique. Thus if we run SVD we will get
vectors w1, . . . , wr that are (up to permuting the indices) equal up
to scale to a1, . . . , ar and hence there would be a solution to the
α1, . . . , αr that makes T = ∑r

i=1 αiw⊗3
i . (Note that in practice we

need to worry about highly non-trivial issues of noise and numerical
stability, but we ignore these at the moment for the purposes of the
current discussion.)

Whitening transformation: Suppose that the ai’s are linearly
independent but not orthogonal to one another. If we are given
the second moment matrix M2 = ∑r

i=1 aia>i then by applying the
transformation M−1/2

2 (restricted to the image space of M2 if r < n)
we can reduce to the orthogonal case.

Recovering higher rank tensors: One limitation of Jennrich’s
algorithm is that it only works in the case that the rank r of the
tensor is at most n, while often we are interested in the so called
“overcomplete” case when r � n. Indeed, as mentioned above, one
could hope to recover a rank r decomposition of a d-dimensional
tensor as long as r � nd−1. Jennrich’s algorithm can scale to higher
rank, at the expense of larger dimension. For example, if r is some
constant times n2 and the vectors are “generic” then we would expect
the vectors a⊗2

1 , . . . , a⊗2
r to be linearly independent, which means

we can run Jennrich’s algorithm on the tensor ∑ a⊗6
i , thinking of it

as a 3-tensor over n2. A closer examination shows that a dimension
5 tensor suffices (can you see why?). More generally, we can get
an algorithm for a rank Ω(ndd/2e+1) decomposition of generic d-
tensors using Jennrich’s algorithm. The best sos based algorithm
achieve rank Ω(nd/2) which (depending on whether d is odd or
even) saves a multiplicative factor of about n or n2 in the number of
observations. This multiplicative factor is non-trivial, but it is not the
only advantage of these sos-based algorithms. They also enjoy better
robustness to noise, which can be even more crucial than saving data
for certain applications.



Boaz Barak and David Steurer 4

1 This simpler algorithm is not more
efficient, but it has a conceptually
simpler and more robust analysis,
which will be useful for us later on.

The “brute data algorithm”

We saw that if we have enough data (i.e., about r3 observations
instead of the minimum of O(rn)), we can use Jennrich’s algorithm
to recover the decomposition. It turns out that if we have even more
data, we can use a simpler algorithm:1

3. Lemma. Suppose that d > O(1/ε2) log r and T = ∑r
i=1 a⊗d

i and that
‖ai‖ = 1 for all i. Then for every i, with probability at least 1/nO(1/ε2) over
a Gaussian v ∈ Rn,

a⊗2
i Tv⊗d−2 ≥ (1− ε)‖a⊗2

i ‖‖Tv⊗d−2‖ , (4)

treating T as an n2 × nd−2 matrix.

Lemma 3 yields an algorithm that can iteratively learn the ai’s
vectors one by one, since if we choose a random v then with high
probability the matrix Tv⊗d−2 will be close to a rank one matrix of
the form aa> where a is (up to scaling) equal to one of the ai’s.

Proof. For any i0, with probability at least n−O(1/ε2), we will get that
(∗) 〈ai0 , v〉 = α for α ≥ (100/ε)

√
log n standard deviations. If we

condition on this event, then the distribution of 〈u, v〉 for u ⊥ ai0 is a
standard Gaussian and so by the union bound with high probability
in this conditional space, (∗∗) for every unit vector u orthogonal to
ai0 , 〈ai0 , v〉 is at most 2

√
log n = (ε/50)α standard deviations.

Suppose that that both (∗) and (∗∗) happen. Then, for every
vector a =

√
1− ε2ai + εu,

〈a, v〉 ≤ α
√

1− ε2 + ε(ε/50)α ≤ (1− ε2/3)α (5)

And hence in particular if 〈ai, a〉 ≤ 1 − ε2 then when this event
occurs then 〈ai, v〉d−2 � 〈ai, v〉/r. Thus, in the tensor Tv⊗d−2 =

∑r
i=1〈ai, v〉d−2a2

i the contributions of ai’s where 〈ai, ai0〉 ≤ 1− ε2 are
negligible compared to the contributions of the ai’s (of which there is
at least one, namely i0) where 〈ai, ai0〉 ≥ 1− ε2. This completes the
proof.

Dreaming about moments

We have seen that in the context of tensor decomposition, we can
trade time for data. While we don’t know of subexponential al-
gorithms that can recover a decomposition from the information
theoretically minimal number of moments (e.g., rank Ω(nd−1) for



Proof, beliefs, and algorithms through the lens of sum-of-squares 5

2 The algorithm makes sense for 3-
tensors, but the analysis is somewhat
simpler for 4 tensors, so we describe it
in this setting here.

3 Note that if M = Ẽµ(a)〈v, ad−2〉a⊗2

is close to a rank one matrix uu> then
the vector w we output will be highly
correlated with u.

d-tensors), we can get faster algorithms if we have access to more
observations. Somewhat surpisingly, the sos algorithm allows us to
make the reverse tradeoff. That is, it allows us to use computation
time to compensate for the lack of observations. The idea is that we
use our pseudo-distributions to produce “fake moments” of higher
degree than the ones we’ve truly observed. We then run a simple
algorithm such as Jennrich’s or the “brute data algorithm” on the
fake moments. As long as the analysis of these simple algorithms can
be embedded in the low degree sos proof system then we can show
that recovery will still succeed even if they are given fake moments.
One can think of this approach as “dreaming” of moments that we
don’t have, and then running the algorithm on those “illusionary”
moments and bringing back the solution from the dream.

Applying this methodology to the “brute data algorithm”, we
obtain the following tensor decomposition algorithm (Barak et al.
[2015]).2

4. Algorithm (dream of brute data). Given input T ∈ Rn4
=

∑r
i=1 a⊗4

i , operate as follows:

1. Use the sum-of-squares algorithm to compute a degree d =

O(log n/ε2) pseudo-distribution µ such that Ẽµ(a) a⊗3 = 1
r T.

2. Compute T̂ = Ẽµ(a) a⊗d and apply the “brute data algorithm” on
it:

• Pick v to be a random Gaussian.

• Pick w using the quadratic sampling lemma from a distribution
matching Ẽµ(a)〈v, a〉d−2a⊗2.3

• Output w

This algorithm outputs a single vector which we can repeat to get
a tensor decomposition. Thus showing that this algorithm succeeds
in quasipolynomial time boils down to the following theorem:

5. Theorem. Suppose that r = n2−ε, then there is d = O(log n/ε2) such
that if ai’s are random Gaussian vectors then with probability 1/qpoly(n),
the vector w that is output satisfies 〈w, a1〉2 ≥ 0.99‖w‖‖a1‖.

Proof. The main property we will use about random Gaussian vectors
a1, . . . , ar, for r � n2, is that with high probability. . .

Making it more efficient: This algorithm runs in quasipolynomial
time, but Ma et al. [2016] have shown an analog sos algorithm that
“dreams” of using Jennrich’s algorithm instead of the brute data one,



Boaz Barak and David Steurer 6

and can run in polynomial time. Also, Hopkins et al. [2016] used the
analysis of sos-based tensor decomposition to extract a direct tensor
decomposition algorithm that does not go through solving general
semidefinite programs, and hence is much more efficient.

References

Boaz Barak, Jonathan A. Kelner, and David Steurer. Dictionary
learning and tensor decomposition via the sum-of-squares method.
In STOC, pages 143–151. ACM, 2015.

Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable
effectiveness of data. IEEE Intelligent Systems, 24(2):8–12, 2009.

Richard A Harshman. Foundations of the parafac procedure: Models
and conditions for an" explanatory" multi-modal factor analysis.
1970.

Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are
NP-hard. J. ACM, 60(6):Art. 45, 39, 2013. ISSN 0004-5411. doi:
10.1145/2512329. URL http://dx.doi.org/10.1145/2512329.

Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer.
Fast spectral algorithms from sum-of-squares proofs: tensor decom-
position and planted sparse vectors. In STOC, pages 178–191. ACM,
2016.

Tamara G Kolda and Brett W Bader. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009.

S. E. Leurgans, R. T. Ross, and R. B. Abel. A decomposition for three-
way arrays. SIAM J. Matrix Anal. Appl., 14(4):1064–1083, 1993. ISSN
0895-4798. doi: 10.1137/0614071. URL http://dx.doi.org/10.1137/
0614071.

Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor
decompositions with sum-of-squares. arXiv preprint arXiv:1610.01980,
2016.

http://dx.doi.org/10.1145/2512329
http://dx.doi.org/10.1137/0614071
http://dx.doi.org/10.1137/0614071

	Tensor decomposition via sum of squares
	Classical tensor decomposition algorithms
	The ``brute data algorithm''
	Dreaming about moments

