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1 Quote taken from “The Nature of
Computation” by Moore and Mertens.

The Unique Games and Sum of Squares: A love hate relation-
ship

“Sad to say, but it will be many more years, if ever before we really un-
derstand the Mystical Power of Twoness. . . 2-SAT is easy, 3-SAT is hard,
2-dimensional matching is easy, 3-dimensional matching is hard. Why? of,
Why?” Eugene Lawler1

When computation is involved, very simple objects can some-
times give rise to very complicated phenomena. One of the nicest
demonstrations of this is Conway’s Game of Life where a system
evolves according to very simple rules, and it has been shown that
very simple initial configuration can give rise to highly non trivial
patterns.

In the world of efficient computation, one of the simplest and
most ubiquitous types of computational problems is the family of
constraint satisfaction problems (CSPs). In a CSP instance, one is given
a collection of “simple” constraints f1, . . . , fm : Σn → {0, 1} where
Σ is some finite alphabet, often Σ = {0, 1} and the goal is to find
an assignment x ∈ Σn so as to maximize the fraction of satisfied
constraints 1

m ∑m
i=1 fi(x).

Despite seeming simple, the complexity picture of constraint
satisfaction problems is not well understood. There are two powerful
conjectures whose resolution would significantly clarify this picture:
the Feder-Vardi Dichotomy Conjecture (Feder and Vardi [1998]) (and
its algebraic variant by Bulatov et al. [2005a]) for the case of exact
computation and Khot’s Unique Games Conjecture (UGC) (Khot [2002])
for the case of approximate computation.

We should say that the status of these two conjectures is not
identical. The dichotomy conjecture is widely believed and many
interesting special cases of it have been proved (in particular for
binary and ternary alphabets (Schaefer [1978],Bulatov [2006])). A
positive resolution of the dichotomy conjecture would provide a
fairly satisfactory resolution of the complexity of exactly computing
CSP’s.

In constrat, there is no consensus on the Unique Games Conjec-
ture, and resolving it one way or the other is an extremely interesting
open problem. Moreover, as we will see, even a positive resolution of
the UGC will not completely settle the complexity of approximating
CSP’s, since the existence of an (sos based) subexponential-time al-
gorithm for the Unique Games problem (Arora et al. [2015]) implies
that the UGC cannot be used to distinguish between CSP’s who can

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
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be approximated in sub exponential time (e.g. 2nε
for 1 > ε > 0) and

those whose approximation requires exponential time (e.g., 2n1−o(1)
).

Defining CSP’s

A CSP is characterized by the family of constraints that are allowed.
These constraints are always local in the sense that they only depend
on a finite number of coordinates in the input, and then apply one of
a family of predicates to these coordinates.

1. Definition (Constraint Satisfaction Problems (CSP)). Let k ∈ N,
Σ be a finite set, and P be a subset of the functions from Σk to {0, 1}.
The class CSPΣ(P) consists of all instances of the form I where I is a
subset of

{ f : Σn → {0, 1} | f (x) = P(xi1 , . . . , xik ) for i1, . . . , ik ∈ [n]} . (1)

(When Σ = {0, 1} then we will drop the subscript Σ from CSP(P).)

The value of an instance I ∈ CSPΣ(P), denoted by val(I), is
defined as 1

|I| maxx∈Σn |{ f ∈ I : f (x) = 1}|.

The hypergraph of an instance I, denoted by G(I) has n vertices,
and |I| hyperedges, where every hyperedge corresponds to the k
coordinates on which the corresponding constraint depends on.

One example of a CSP is when the family P is generated by apply-
ing one or more predicates to the literals in the input which are the
variables and their negations in the Σ = {0, 1} case (or their shifts in
the larger alphabet case):

2. Definition. Let k ∈ N, Σ finite, and P ⊆ Σk → {0, 1}. We define
the family of predicates generated by P , denoted as 〈P〉, to be the set

{P : Σk → {0, 1} | ∃P′ ∈ P , σ1, . . . , σk ∈ Σ s.t. P(x1, . . . , xk) = P′(x1 +σ1, . . . , xk +σk)}
(2)

where we identify Σ with {0, . . . , |Σ| − 1} and addition is done
modulo |Σ|.

The basic computational problem associated with a CSP is to
compute or approximate its value. For simplicity we will be focused
on two kinds of decision problems:

• The exact computation problem for CSPΣ(P) is the task of determin-
ing, given I ∈ CSPΣ(P), whether val(I) = 1 or val(I) < 1.
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2 We can also characterize a d to 1 game
as a k ary predicate P : Σk → {0, 1} such
that Σ′ = P−1(1) satisfies that for every
i ∈ [k] and σ ∈ Σ, |{x ∈ Σ | xi = σ}| =
d.

• The c vs s approximate computation problem for CSPΣ(P) is the task
of distinguishing, given I ∈ CSPΣ(P), between the case that
val(I) ≥ c and the case that val(I) ≤ s.

Examples:

Here are some classical examples of CSP’s

• CSP(〈x1 ∨ x2 ∨ · · · ∨ xk〉) is the k− SAT problem where one is given
a k-CNF (e.g., (x17 ∨ x9 ∨ x52) ∧ (x52 ∨ x5 ∨ x89) ∧ (x9 ∨ x22 ∨ x89))
and wants to know if one can satisfy it or, barring that, how close
can we get.

• CSP(〈x1 ⊕ · · · ⊕ xk〉) is the k − XOR (also known as kLIN(2) )
problem.

• If Σ = {0, . . . , k− 1} then CSPΣ({6=}) is the k coloring problem. In
particular for k = 2 this is the Maximum Cut problem

• CSP({(x1 ∧ · · · ∧ xk−1)⇒ xk}) is known as the HORN sat problem.

• For finite Σ and d ∈ N, a d to 1 projection constraint is a predicate
P : Σ′ × Σ → {0, 1} where |Σ′| = d|Σ| and where for every y ∈ Σ
there exist exactly d x’s in Σ′ such that P(x, y) = 1. Clearly we
can also think of P as a predicate taking two inputs from the
larger alphabet Σ′.2 The d to 1 problem with alphabet Σ is the CSP
corresponding to the set of all d to 1 projection constraints. The 1
to 1 problem is also known as the unique games problem. The union
of the d to 1 problem over all d is known as the label cover problem.

Classes of CSP’s

At a rough and imprecise level, our intuition from the study of CSP’s
is that there are three “canonical prototypes” of CSP problems:

• Linear predicates: These are CSP’s such as k-XOR where the class
of predicates admits some linear or other algebraic structure to
allows a Gaussian elimination type algorithm to solve their exact
version. The general notion is quite subtle and involves the notion
of a polymorphism of the predicate. (Indeed, the technical content
of the algebraic dichotomy conjecture is that every predicate
admitting such a polymorphism can be solved by a Gaussian
elimination type algorithm.)
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• Propagation predicates: These are CSP’s such as 2-SAT, Horn-SAT,
and Max-Cut where “guessing” few coordinates of the assignment
allows us to propagate values for the other coordinates. In par-
ticular there is a simple linear time algorithm to solve the exact
satisfiability problem of such CSP’s.

• Hard predicates: These are CSP’s such as 3-SAT or 3-COL (as well
as their versions with larger arity) where neither an algebraic nor
propagation structure is present.

The algebraic dichotomy conjecture can be phrased as the con-
jecture that the exact decision problem for linear predicates can
be solved with a poly(n) (in fact with exponent at most 3) time al-
gorithm, propagation predicates can be solved with a linear time
algorithm, while the exact decision problem for all other predicates
is NP hard. In fact, the reduction showing NP hardness for the latter
case only has a linear blowup from the 3SAT problem and so, under
the exponential time hypothesis, it rules out 2o(n) time algorithms
for the exact decision problem for these predicates. The latter two
parts (propagation based algorithm and NP hardness reduction) of
the dichotomy conjecture have already been proven, and it is the first
part that is yet open. To some extent this is not surprising: the Gaus-
sian elimination algorithm is a canonical example of an algorithm
using non trivial algebraic structure (and in particular, one that is
not captured by the sos algorithm) and understanding its power is a
subtle question.

Approximating CSP’s

Considering the notion of approximation of CSP’s makes understand-
ing their complexity harder in some respects and easier in others.
Let us focus on the 1− ε vs f (ε) approximation problem for small
ε > 0. One aspect in which approximation makes classification easier
is that the Gaussian elimination type algorithm are extremely brittle
and so the linear predicates actually become hard under noise. This is
epitomized by the following theorem of Håstad [2001]:

3. Theorem. For every ε > 0, the 1− ε vs 1/2 + ε approximation problem
for 3XOR is NP hard.

Moshkovitz and Raz [2010] improved this to give a Õ(n)
blowup reduction, as well as showing that ε can tend to zero as
fast 1/polylog(n). As far as we know, the fastest algorithm in this
problem might require time exp(poly(ε)n).

https://en.wikipedia.org/wiki/Exponential_time_hypothesis
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3 Hint: Start by showing this for the
case that the graph has bounded
maximum degree. Then show that one
can assume without loss of generality
that the degree is at most a constant
when shooting for a 1/2 satisfying
solution.

We note that the “brittleness” of Gaussian elimination under
noise is also crucially used in cryptography where Lattice based
cryptosystems all require for their security the conjecture that solving
noisy linear equations is hard, c.f. (Regev [2005]) (and in fact for
levels of noise that are below those where we can expect to get NP
hardness, c.f. (Aharonov and Regev [2004])).

In contrast, the propagation predicates do have non trivial ap-
proximation of the form 1 − ε vs 1 − f (ε) for f that tends to 0 as
ε → 0. However, understanding the shape of this function f (·) is
an open question, and is to a large extent the content of the Unique
Games conjecture. For example, for the Max-Cut problem, the Goe-
mans and Williamson [1995] algorithm yields a 1− ε vs 1− C

√
ε

approximation (for some absolute constant C) while the best known
NP hardness by Trevisan et al. [2000] (which uses a gadget that was
found via a computer search) rules out a 1− ε vs 1− C′ε approxima-
tion for some absolute C′. Khot et al. [2004] and Mossel et al. [2010]
showed that if the Unique Games Conjecture is true, then there is no
polynomial-time algorithm beating the guarantee of the Goemans
and Williamson [1995] algorithm.

The UGC itself can be phrased as follows:

Unique Games Conjecture: For every ε > 0 and δ > 0 there is some Σ
such that the 1− ε vs δ problem for unique games on alphabet Σ is NP
hard.

4. Exercise. Give a polynomial-time algorithm that finds a perfectly
satisfying solution for a unique game instance if one exists.

5. Exercise. Give a polynomial-time algorithm that distinguishes
between the case that a unique game instance on n variables has a
1− 1/(100 log n) satisfying solution and the case that every solution
satisfies at most 1/2 fraction of the instances.3

While the UGC itself is a constraint satisfaction problem, it has
been shown to imply interesting results for other problems as well.
Nonetheless, CSP’s provide a very useful lens under which to exam-
ine the results and open questions surrounding the UGC.

Illustration of the conjectural complexity of CSP’s

If we assume the exponential time hypothesis (Impagliazzo et al.
[1998]) and the algebraic dychotomy conjecture (Bulatov et al.
[2005b]) (both of which are widely believed, especially if we do
not distinguish between exp(Ω(n)) and exp(n1−o(1)) running time)
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then for every exact constraint satisfaction problem can either be
solved in poly(n) (in fact O(n3)) time or requires exp(Ω(n)) time.
The unique games conjecture, coupled with the sub-exponential time
algorithm Arora et al. [2015] shows that the picture for approximation
problems is very different. For some CSP’s, such as the “hard” or
“linear” CSP’s that contain a pairwise independent distribution, there
is a threshold effect similar to the case of exact solution and (up to
some measure zero sets) for every two numbers 0 ≤ s < c ≤ 1 the
task of coming up can either be solved in poly(n) and or requires
exp(n1−o(1)) time. For others, such as the unique games problem
itself (and likely others, such as max cut) there is a region of parame-
ters where the problem can be solved in subexponential time.

Figure 1: A rough (and not to scale)
sketch of the known and/or very
likely time complexity of finding an
assignment satisfying s fraction of the
constraints given a non propagation
instance (i.e., containing a pairwise
independent distribution) “linear” or
“hard” type CSP with optimal value
c for some c < 1. This relies on the
results of Håstad [2001], Moshkovitz
and Raz [2010], Chan [2016], Barak et al.
[2015]

Figure 2: A rough (and not to scale)
sketch of the known and conjectured
time complexity of finding an as-
signment satisfying s fraction of the
constraints given an instance of a “prop-
agation” type CSP with optimal value
c for some c < 1. This relies on the
results of Håstad [2001], Raghavendra
[2008], Arora et al. [2015], Moshkovitz
and Raz [2010]
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Figure 3: Conjectured complexity curve
for 3SAT.
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Figure 4: Conjectured complexity curve
for 3XOR
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Figure 5: Conjectured complexity curve
for Max Cut assuming the UGC and a
generalization of the subexponential
algorithm. The curve for exponential
hardness is a rough approximation, the
curve for UGC hardness is taken from
O’Donnell and Wu [2008]
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Algorithmic results known about the unique games problem.

We denote the unique games problem on alphabet Σ as Σ-UG for
short. The following algorithmic results are known about it:

• The basic SDP algorithm (which is a generalization of the Goe-
mans and Williamson [1995] max cut algorithm) can solve the
1− ε vs 1−O(

√
ε log |Σ|) algorithm for the Σ-UG problem, as well

as the 1− ε vs Ω(|Σ|−ε/(2−ε)) version of this problem (Charikar
et al. [2006]). In particular this means that the Σ-UG problem is
not approximation resistant in the sense that there is an algorithm
for the 1− o(1) vs 1

|Σ| + o(1) variant of this problem. It also means
that the order of quantifiers in the UGC formulation is crucial, and
(unlike the case of 3XOR) we cannot have hardness if the complete-
ness condition holds with parameter 1− ε for ε tending to zero
independently of the alphabet size.

• When |Σ| � 1/ε (in particular |Σ| = 2Ω(1/ε)) then no polynomial
time algorithm is known. However, Arora et al. [2015] showed a
exp(poly(|Σ|)npoly(ε)) time algorithm for the 1− ε vs 1/2 Σ-UG
problem.

The approximation guarantees of the Basic SDP algorithm are
known to be optimal for Σ-UG if the unique games conjecture is true
(Charikar et al. [2006]).

The relation of UGC and the sum of squares algorithm

The UGC and sum of squares algorithm seem to have a sort of “love
hate relationship”. For starters, one of the most striking predictions
of the UGC is the result of Raghavendra [2008] that if the UGC is true
than sos is optimal for all constraint satisfaction problems:

6. Theorem (Raghavendra’s Theorem). For every d ∈ N and CSP class
C, define fd(ε) to be the infimum over n going to infinity, of val(I) over C
instances I of n variables such that there is a degree d pseudo-distribution µ

such that Ẽµ val(I) ≥ 1− ε. Then, if the UGC is true then for every CSP
class C with arity k, every ε > 0, and every δ > 0, the 1− ε− δ vs f2k(ε)

approximation problem for C is NP hard.

In fact Raghavendra [2008] showed that this holds for a restricted
class of pseudo-distributions where the most interesting constraint
(namely that Ẽµ p2 ≥ 0 for all degree d/2 polynomials) needs to hold
only for d = 2. (These corresponds to solutions of what is known as
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the “Basic SDP program” for C.) Thus the UGC is a “friend” of the
sos algorithm in the sense that it shows that it is optimal for a broad
class of optimization problems. (Even if it shows that for this class,
we don’t really need to use some of the more interesting constraints
of the sos algorithm.)

However, the sos algorithm hasn’t always been a friend of the
UGC. Arguably the best evidence for the UGC comes from candidate
hard instances, which are instances of the unique games problem (or
other CSP’s or computational problems) for which the predictions
of the UGC hold true for some natural algorithms. That is, the per-
formance of these algorithm is not better than the performance that
the UGC predicts is the best possible for polynomial time algorithms.
However, the sos algorithm has been used to give some results that
call the UGC into questions:

• For the Unique Games problem itself, the sos algorithm gives an
exp(npoly(ε)) time algorithm for the 1− ε vs 1/2 unique games
problem which is predicted to be NP hard via the UGC. This
means that even if the UGC is true, reductions based on it cannot
rule out, say, a exp(

√
n) time algorithm for any problem. This can

also be extended to a exp(npoly(ε)) time algorithm for the c vs ε

d-to-1 games problem for every absolute constans c > 0, d ∈N that
are independent of ε.

• The known hard instances that match the UGC’s predictions are
integrality gaps for the Basic SDP program that are CSP instances
where for some 1 ≥ c > s ≥ 0, the SDP value is at least c but it
can be proven using various isoperimetric, invariance and concen-
tration results that the true value is at most s. It turns out that the
proofs of (sufficiently close variants of) these results can be cap-
tured in the constant degree sos proof system, and so there is some
constant d such that the degree d sos value for these instances is
also at most s.

• The unique games conjecture is closely related to a conjecture
known as the small set expansion hypothesis (the relation is roughly
related to the relation between the Max Cut and Sparsest Cut
problems). This latter conjecture is in turn related to the task of
finding an (approximately) sparse vector inside a linear subspace,
where the sos algorithm does provide non trivial average-case
guarantees. It is also related to the Best Separable State problem
in quantum information theory, for which the sos algorithm
provides non trivial worst case guarantees, though in incomparable
parameter regimes. Thus there is a plausible path to refuting the
small set expansion hypothesis (and possibly the UGC itself) via
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sos-based algorithm for finding sparse vectors in a subspace.

Nevertheless, at the moment the status of the UGC is wide
open, and indeed some of the efforts to prove the UGC (Khot and
Moshkovitz [2016]),(Khot et al. [2016]) have also focused on coming
up with integrality gaps for the sos program and/or using tools such
as the short code (Barak et al. [2012]) that have been developed in this
context. So, regardless of the final outcome, the sos algorithm and the
unique games conjecture will shed a lot of light on one another.
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