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Approaches to prove the Unique Games Conjecture

Given the sub-exponential time algorithm for unique games (Arora
et al. [2015]), that under the exponential time hypothesis, the unique
games conjecture implies the following conjecture:

Intermediate complexity conjecture: There exist some 1 > c > s > 0,
1 > α > β > 0 and a CSP CSPΣ(P) such that the c vs s problem for
CSPΣ(P) can be solved in time exp(O(nα)) but it cannot be solved in
time faster than exp(Ω(nβ)).

This is a very interesting conjecture in its own right ,as it says that
unlike the widely believed situation for exact computation, it is not
the case that every CSP approximation problem either can be solved
in polynomial time or requires exp(Ω(n)) time. Thus, if the Unique
Games Conjecture is true, then the complexity landscape of approxi-
mation problems for CSP’s is much richer (at least in this sense) than
the one for exact computation. This issue of “intermediate complex-
ity” also raises some obstacles for certain approaches for proving the
unique games conjecture, as well as suggests certain directions for
doing so.

Subexponential complexity and gadget reductions.

The popular approach to proving hardness of approximation for
CSP’s can be called the “label cover + gadget paradigm”.

1. Definition. A label cover predicate is a predicate LC : Σ′ × Σ′ →
{0, 1} such that there is some |Σ′|/|Σ′′|-to-one functions π1, π2 such
that P(x, y) = 1 iff π1(x) = π2(y).

One canonical way to get a label cover instance is the “clause
vs clause” construction. Suppose I is an instance of some CSP, say
3LIN(2) for concreteness, we can define a new label cover instance
I′ where for every equation xi + xj + xk = b we have a variable
Xi,j,k in the alphabet [4] which we identify with the set of satisfying
assignments to this equation. For every two equations that share a
variable xi + xj + xk = b, xi + xj + xk = b′ we put in the constraint that
this variable is identical in both, which corresponds to checking that
two projections of [4] to {0, 1} agree with one another.

One can relate the two instances as follows:

2. Exercise. Assume that the original 3LIN(2) instance was d regular
and had m constraints (i.e., every variable participated in the same
number of constraints).
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• Prove that if there is an assignment x ∈ {0, 1}n for the original
instance satisfying 1− ε fraction of the constraints then there is
an assignment y ∈ [4]m satisfying at least 1− 2ε fraction of the
constraints of the label cover instance.

• Prove that if there is an assignment y ∈ [4]m satisfying at least 1− δ

fraction of the constraints of the label cover instance then there is
an assignment x ∈ {0, 1}n satisfying at least 1− 2δ fraction of the
constraints of the original instance.

Given a label cover instance, a canonical way to reduce it to a CSP
instance is the following:

3. Definition. Let LC be a family of label cover predicates mapping
Σ′ to {0, 1} and P be a family of predicates mapping Σk to {0, 1}
for some Σ, k. A (c′, s′) 7→ (c, s) gadget reduction from CSP(LC) to
CSP(P) consists of an encoding map E : Σ′ → Σt and a gadget map that
takes a predicate LC ∈ LC to a CSP(P) instance GLC on 2t variables,
such that for every n-variable instance I′ of CSP(LC), if we let I be
the nt-variate instance in for every constraint LC(xi, xj) = 1 we place
the GLC instance on the 2t variables of the i-th and j-th blocks then it
holds that:

• If x′ ∈ Σ′n satisfies at least a c′ fraction of the constraints of I′,
then x = (E(x′1), . . . , E(x′n)) ∈ Σnt satisfies at least c fraction of the
constraints of I.

• If x ∈ Σtn satisfies at least s fraction of the constraints of I, then
there exists some x ∈ Σ′n that satisfies at least s′ fraction of the
constraints of I′.

Note that for every t, a gadget reduction maps an instance I′ of n
variables and m constraints into an instance I of nt variables and at
most m(2t)k|P| constraints, which for t, k, |P| constant means that the
size of I is linear in the size of I′. Hence in particular one can show
the following:

4. Exercise. Prove that if there is a (c′, s′) 7→ (c, s) reduction from
CSP(LC) to CSP(P) with parameter t, then if there is a T(n) time
algorithm for the c vs s problem for CSP(P) then there is a T(Cn)
time algorithm for the c′ vs s′ problem for CSP(LC) where C is a
constant depending only on |P|, k, t.

5. Exercise. Prove that under the assumptions above, if I′ is a
CSP(LC) instance that has a degree d pseudo-distribution µ′ such
that Ẽµ′(x)

1
I′ ∑ f∈I′ f (x) ≥ c′ then there exists a degree d/C pseudo-

distribution µ such that Ẽµ(x)
1
|I| ∑ f∈I f (x) ≥ c where C is a constant

depending only on |P|, k, t.
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In particular this means that, if we assume that the original label
cover instance could not be solved in time exp(n1−ε) then the same
holds for the resulting instance, and if we had an Ω(n) lower bound
on the sos degree for the original instance then that lower bound car-
ries over to the resulting instance. If the unique games conjecture is
NP hard, then (assuming the ETH), the corresponding computational
problem cannot be solved in time exp(no(1)), while we know that it
can be solved by an exp(nε) time algorithm for some small ε > 0,
and in fact by the degree nε sos program. This means that if want
to establish the UGC via a gadget reduction, we’d better start with
a label cover instance that has intermediate complexity, in both the
time and the sos degree senses.

On label cover instances with intermediate complexity.

Some of the approaches to prove the unique games conjecture involve
gadget reduction on top of certain label cover instances. Thus these
approaches attempt to first prove (variants of) the “intermediate
complexity conjecture” and then use that to derive the unique games
conjecture. This raises the question of what properties of label cover
instances could yield to them having intermediate complexity in cer-
tain approximation regimes. Assuming the unique games conjecture
then having 1 to 1 projections (or even O(1) to 1) is one such prop-
erty, but is it easier to show this for other properties? Can we use sos
to get some intuition on whether we expect this to be true?

The original way to manufacture label cover instances that are
very hard to approximate was to start with a label cover instance
over alphabet Σ with say 1 vs 1− ε hardness (e.g., by starting from
3SAT) and then transform it into an instance over alphabet Σ⊗t

with gap, say, 1 vs (1− εO(1))Ω(t) using an amplification result such
as the parallel repetition theorem (Raz [1995]). For example, if we
started with the label cover corresponding to a 3XOR instance, we
would get a label cover instance of alphabet Σ = [4]t where the
projection maps Σ to an alphabet of size 2t =

√
|Σ| and the hardness

of approximation would be 1 vs |Σ|−ε for some ε > 0.

The parallel repetition theorem blows up an instance of size n to
size N = nt, and so one could a priori conjecture that the label cover
problem with gap of 1− ε vs ε has intermediate complexity, in the
sense that it is NP hard but has an algorithm that runs in time 2N1/t

or so where N is the instance size. However, this turns out to be false.
Moshkovitz and Raz [2010] showed an alternative construction to
get 1 vs 1− ε hardness for label cover using only quasilinear blowup
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1 The right notion of approximation
here seems to be strong soundness where
in the soundness case, not only every
assignment x satisfies at most an ε
fraction of the constraints, but even
that the average fractional Hamming
distance of the projection of x to a
clause and P−1(1) is at least 1− ε.

from, say, 3SAT. In the sos world, this is even easier. If we consider
the 3LIN(GF(2t)) problem, where the equations xi + xj + xk = b
are taken in the field GF(2t) then the same proof as Grigoriev shows
that a random instance (where one would not be able to satisfy more
than 2−t + o(1) fraction of the constraints) has a pseudo-distribution
that pretends to be completely satisfiable. Here to the corresponding
label cover would involve a projection of 22t to 2t or an alphabet Σ to
alphabet of size

√
|Σ|.

Another amplification construction is the “match/confuse games”
of Feige and Kilian [1994] . In this construction, one takes a basic
instance (such as the 3LIN(2) instance), and transforms it into a
label cover where each variable corresponds to t tuples of constraints,
and we put a constraint between pairs of tuples where t− t′ of the
constraints are identical (for some t′ � t) and the rest share a variable.
One can show that this again amplifies the gap to something like
1 vs 2−Ω(t′), but now the projections are “smoother” or closer to
being 1 to 1 in the sense that they map the alphabet Σ = [4]t (in the
case when the underlying CSP is 3LIN(2)) to an alphabet of size
[4]t−t′2t′ = |Σ|1−o(1), since when two constraints are identical we
require their projection to be identical too. Label cover instances
of this type are sometimes known as smooth label cover. One can
also think of a smooth label cover as a CSP over a family of k-ary
predicates P ⊆ {0, 1}Σk

that satisfy that for every P ∈ P , P−1(1)
is an error correcting code of the maximum distance of k − 1 (i.e.,
every two distinct vectors agree on at most a single coordinate).
It is an interesting open question whether there are sos instances
of smooth label cover that require linear degree to obtain a 1 vs ε

approximation, a positive answer can be interpreted as an obstacle to
various approaches to proving the UGC.1
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