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Unique Games and Small Set Expansion

The Unique Games Conjecture (UGC) (Khot [2002]) states that for every
ε > 0 there is some finite Σ such that the 1− ε vs. ε problem for
the unique games problem with alphabet Σ is NP hard. An instance
to this problem can be viewed as a set of equations on variables
x1, . . . , xn ∈ Σ where each equation has the form xi = πi,j(xj) where
πi,j is a permutation over Σ.

The order of quantifiers here is crucial. Clearly there is a propaga-
tion type algorithm that can find a perfectly satisfying assignment if
one exist, and as we mentioned before, it turns out that there is also
an algorithm nearly satisfying assignment (e.g., satisfying 0.99 frac-
tion of constraints) if ε tends to zero independently of Σ. However,
when the order is changed, the simple propagation type algorithms
fail. That is, if we guess an assignment to the variable x1, and use
the permutation constraints to propagate this guess to an assignment
to x1’s neighbors and so on, then once we take more than O(1/ε)

steps we are virtually guaranteed to make a mistake, in which case
our propagated values are essentially meaningless. One way to view
the unique games conjecture is as stating this situation is inherent,
and there is no way for us to patch up the local pairwise correlations
that the constraints induce into a global picture. While the jury is
still out on whether the conjecture is true as originally stated, we will
see that the sos algorithm allows us in some circumstances to do just
that. The small set expansion (SSE) problem (Raghavendra and Steurer
[2010]) turned out to be a clean abstraction that seems to capture the
“combinatorial heart” of the unique games problem, and has been
helpful in both designing algorithms for unique games as well as
constructing candidate hard instances for it. We now describe the SSE
problem and outline the known relations between it and the unique
games problem.

1. Definition (Small Set Expansion problem). For every undirected
d-regular graph G = (V, E), and δ > 0 the expansion profile of G at δ is

ϕδ(G) = min
S⊆V,|S|≤δ|V|

|E(S, S)|/(d|S|) . (1)

For 0 < c < s < 1, the c vs s δ-SSE problem is to distinguish, given
a regular undirected graph G, between the case that varphiδ(G) ≤ c
and the case that ϕδ(G) ≥ s.

The small set expansion hypothesis (SSEH) is that for every ε > 0
there is some δ such that the ε vs 1− ε δ-SSE problem is NP hard.

We will see that every instance of unique games on alphabet Σ
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gives rise naturally to an instance of 1
|Σ| -SSE. But the value of the

resulting instance is not always the same as the original one, and
hence this natural mapping does not yield a valid reduction from
the unique games to the SSE problem. Indeed, no such reduction
is known. However, Raghavendra and Steurer [2010] gave a highly
non trivial reduction in the other direction (i.e., reducing SSE to UG)
hance showing that the SSEH implies the UGC. Hence, assuming the
SSEH yields all the hardness results that are known from the UGC,
and there are also some other problems such as sparsest cut where we
only know how to establish hardness based on the SSEH and not the
UGC (Raghavendra et al. [2012]).

Embedding unique games into small set expansion

Given a unique games instance I on n variables and alphabet Σ,
we can construct a graph G(I) (known as the label extended graph
corresponding to I) on n|Σ| vertices where for every equation of the
form xi = πi,j(xj) we connect the vertex (i, σ) with (j, τ) if πi,j(τ) = σ.
Note that every assignment x ∈ Σn is naturally mapped into a subset
S of size n (i.e. 1/|Σ| fraction) of the vertices of G(I) corresponding
to the vertices {(i, xi) : i ∈ [n]}. Let’s assume for simplicity that in
the unique games instance every variable participated in exactly d of
the constraints (and hence there is a total of nd/2 constraints). Then
the graph G will have degree d and every constraint xi 6= πi,j(xj) that
is violated by x contributes exactly two edges to E(S, S) (the edges
{(i, xi), (j, π−1

i,j (xi))} and {(i, πi,j(xj)), (j, xj)}). Hence the fraction of

violated constraints by x is equal to E(S, S)/(d|S|).

However, this is not a valid reduction, since we cannot do this
mapping in reverse. That is, the graph G might have a set S of n
vertices that does not expand that does not correspond to any assign-
ment for the unique games. It can be shown that this reduction is
valid if the constraint graph of the unique games instance is a small
set expander in the sense that every set of o(1) fraction of the vertices
has expansion 1− o(1).

The known algorithmic results for small set expansion are identi-
cal to the ones known for unique games:

• The basic SDP algorithm can solve the 1− ε vs 1−O(
√

ε log(1/δ))

δ-SSE problem (Raghavendra et al. [2010]) which matches the
1 − ε vs 1 −O(

√
ε log |Σ|) algorithm for the Σ-UG problem of

Charikar et al. [2006] (which itself generalizes the 1 − ε vs 1 −
O(
√

ε) Goemans and Williamson [1995] for Max Cut).
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• When δ � ε (specially δ < exp(Ω(1/ε))) then no polynomial
time algorithm is known. However, Arora et al. [2015] showed a
exp(poly(1/δ)npoly(1/ε)) time algorithm for the 1− ε vs 1/2 δ-SSE
problem and similarly a exp(poly(|Σ|)npoly(1/ε)) time algorithm
for the 1− ε vs 1/2 Σ-UG problem.

Thus it is consistent with current knowledge that the 1 − ε vs
ε Σ-UG computational problem has complexity equivalent (up to
polynomial factors) to the 1− ε vs ε 1

|Σ| -SSE problem. At the moment
one can think of the small set expansion problem as the “easiest”
“UG like” problem and the Max-Cut (or Max 2LIN(2)) problem
as the “hardest” “UG like” problem where by “UG like” we mean
problems that in the perfect case can be solved by propagation like
algorithms and that we suspect might have a subexponential time
algorithm.

(Such algorithms are known for unique games and small set ex-
pansion but not for Max Cut.) Unique Games itself can be thought of
as lying somewhere between these two problems. The following fig-
ure represents are current (very partial) knowledge of the landscape
of complexity for CSPs and related graph problems such as small set
expansion and sparsest cut

Small set expansion as finding “analytically sparse” vectors.

We have explained that the defining feature of “unique games like”
problems is the fact that they exhibit strong pairwise correlations. One
way to see it is that these problems have the form of trying to opti-
mize a quadratic polynomial x>Ax over some “structured” set x:

• The maximum cut problem can be thought as the task of maximizing
x>Lx over x ∈ {±1}n where L is the Laplacian matrix of the graph.

• The sparsest cut problem can be thought of as the task of minimizing
the same polynomial x>Lx over unit vectors (in `2 norm) of the
form x ∈ {0, α}n for some α > 0.

• The small set expansion problem can be thought of as the task of
minimizing the same polynomial x>Lx over unit vectors of the
form x ∈ {0, α}n subject to the condition that ‖x‖1/

√
n ≤

√
δ

(which corresponds to the condition that α ≥ 1/
√

nδ).

• The unique games problem can be thought of as the task of min-
imizing the polynomial x>Lx where L is the Laplacian matrix
corresponding to the label extended graph of the game and x ranges
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Figure 1: The “landscape” of the com-
putational difficulty of computational
problems. If the Unique Games conjec-
ture is false, all the problems above the
dotted green line might be solvable by
sos of degree Õ(1).
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over all vectors in {0, 1}n|Σ| such that for every i ∈ [n] there exists
exactly one σ ∈ Σ such that xi,σ = 1.

In all of these cases the computational question we are faced with
amounts to what kind of global information can we extract about the
unknown assignment x from the the local pairwise information we get
by knowing the expected value of (xi − xj)

2 over an average edge i ∼ j
in the graph.

Proxies for sparsity

We see that all these problems amount to optimizing some quadratic
polynomial q(x) over unit vector x’s that are in some structured
set. By “guessing” the optimum value λ that q(x) can achieve, we
can move to a “dual” version of these problems where we want to
maximize p(x) over all x ∈ Rn such that q(x) = λ where p(x) is some
“reward function” that is larger the closer that x is to our structured
set (equivalently, one can look at −p(x) as a function that penalizes x’s
that are far from our structured set).

In fact, in our setting this λ will often be (close to) the minimum
or maximum of q(·) which means that when x achieves q(x) = λ

then all the directional derivatives of the quadratic q (which are
linear functions) vanish. Another way to say it is that the condition
q(x) = λ will correspond to x being (almost) inside some linear
subspace V ⊆ Rn (which will be the eigenspace of q, looked at as a
matrix, corresponding to the value λ and other nearby values). This
means that we can reduce our problem to the task of approximating
the value

max
x∈V,‖x‖=1

p(x) (2)

where p(·) is a problem-specific reward function and V is a linear
subspace of Rn that is derived from the input. This formulation
does not necessarily make the problem easier as p(·) can (and will)
be a non convex function, but, when p is a low degree polynomial,
it does make it potentially easier to analyze the performance of
the sos algorithm. That being said, in none of these cases so far
we have found the “right” reward function p(·) that would yield a
tight analysis for the sos algorithm. But for the small set expansion
question, there is a particularly natural and simple reward function
that shows promise for better analysis, and this is what we will focus
on next.

Choosing such a reward function might seem to go against the
“sos philosophy” where we are not supposed to use creativity in
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designing the algorithm, but rather formulate a problem such as
small set expansion as an sos program in the most straightforward
way, without having to guess a clever reward function. We believe
that in the cases we discussed, it is possible to consign the choice of
the reward function to the analysis of the standard sos program. That
is, if one is able to show that the sos relaxation for Eq. (2) achieves
certain guarantees for the original small set expansion problem, then
it should be possible to show that the standard sos program for small
set expansion would achieve the same guarantees.

Norm ratios as proxies for sparsity

In the small set expansion we are trying to minimize the quadratic
x>Lx subject to x ∈ {0, α} being sparse. It turns out that the sparsity
condition is more significant than the Booleanity. For example, we
can show the following result:

2. Theorem (Hard local Cheeger). Suppose that x ∈ Rn has at most δn
nonzero coordinates, and satisfies x>Lx ≤ ε‖x‖2 where L is the Laplacian
of an n-vertex d-regular graph G. Then there exists a set S of at most δn of
G’s vertices such that |E(S, S)| ≤ O(

√
εdn).

It turns out that this theorem can be proven in much the same way
that Cheeger itself is proven, showing that a random level set of x
(chosen such that it will have the support be a subset of the nonzero
coordinates of x) will satisfy the needed condition. Note that if x has
at most δn nonzero coordinates then ‖x‖1 ≤

√
nδ‖x‖2. It turns out

this condition is sufficient for the above theorem:

3. Theorem (Local Cheeger). Suppose that x ∈ Rn satisfies ‖x‖1 ≤√
δn‖x‖2, and satisfies x>Lx ≤ ε‖x‖2 where L is the Laplacian of an

n-vertex d-regular graph G. Then there exists a set S of at most O(
√

δn) of
G’s vertices such that |E(S, S)| ≤ O(

√
εdn).

Proof. If x satisfies the theorem’s assumptions, then we can write x =

x′ + x′′ where for every i, if |xi| > ‖x‖2/(2
√

n) then x′i = xi and x′′i =

0 and else x′′i = xi and x′i = 0. By this choice, ‖x′′‖2
2 ≤ normx2/2 and

so (since x′ and x′′ are orthogonal) ‖x′‖2 = ‖x‖2 − ‖x′′‖2 ≥ ‖x‖2/2.
By direct inspection, zeroing out coordinates will not increase the
value of x>Lx and so

x′>Lx′ ≤ x>Lx ≤ ε‖x‖2 ≤ 2ε‖x′‖2 . (3)

But the number of nonzero coordinates in x′ is at most 2
√

δn.
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Indeed, if there were more than 2
√

δn coordinates in which |xi| ≥
normx2/(2

√
n) then ‖x‖1 ≥ 2

√
δn‖x‖2/(2

√
n) = 2

√
δn‖x‖2.

The above suggests the following can serve as a smooth proxy for
the small set expansion problem:

max‖x‖2
2 (4)

over x ∈ Rn such that ‖x‖1 = 1 and x>Lx ≤ ε‖x‖2. Indeed the `1 to
`2 norm ratio is an excellent proxy for sparsity, but unfortunately one
where we don’t know how to prove algorithmic results for.

As we say in the sparsest vector problem, the `2 to `4 ratio (and
more generally the `2 to `p ratio for p > 2) is a quantity we find
easier to analyze, and indeed it turns out we can prove the following
theorem:

4. Theorem. Let G be a d regular and Vλ be the subspace of vectors corre-
sponnding to eigenvalues smaller than λ in the Laplacian.

1. If max‖x‖2=1,x∈Vλ
‖x‖p ≤ Cn1/p−1/2 then for every subset S of at most

δn vertices, |E(S, S)| ≥ λ(1− C2δ1−2/p)

2. If there is a vector x ∈ Vλ with ‖x‖p > C‖x‖2 then there exists a set S

of at most O(n/
√

C) vertices such that |E(S, S)| ≤ 1− (1− λ)2p2−O(p)

where the O(·) factor hide absolute factors independent of C.

Statement 1. (a bound on the `p/`2 ratio implies expansion) has
been somewhat of “folklore” (e.g., see Chapter 10 in O’Donnell
[2014]) . Statement 2. is due to ? .

The proof for 1. is not hard and uses Hölder’s inequality in a
straightforward matter. In particular (and this has been found useful)
this proof can be embedded in the degree O(p) sos program.

The proof for 2. is more involved. One way to get intuition for
this is that if x>Lx is small then one could perhaps hope that y>Ly
is also not too large where y ∈ Rn is defined as (xp/2

1 , . . . , xp/2
n ).

That is, x>Lx ≤ ε‖x‖2 means that on average over a random edge
{i, j}, (xi − xj)

2 ≤ O(ε(x2
i + x2

j )). So one can perhaps hope that for
a “typical” edge i, j, xi ∈ (1±O(ε))xj but if that holds then yi ∈
(1±O(pε))yj since yi = xp/2

i and yj = xp/2
j . But if E xp

i > C(E x2
i )

p/2

we can show using Hölder that E xp
i > C′(E xp/2

i )2 for some C′ that
goes to infinity with C. Hence this means that y is sparse in the `2

vs `1 sense, and we can apply Theorem 3. The actual proof breaks
x into “level sets” that of values that equal one another up 1 ± ε

multiplicative factors, and then analyzes the interaction between
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these level sets. This turns out to be quite involved but ultimately
doable.

We should note that there is a qualitative difference between the
known proof of 2. and the proof of Theorem 3 and it is that the
known proof does not supply a simple procedure to “round” any
vector x that satisfies ‖x‖p ≥ C‖x‖2 to a small set S that doesn’t
expand, but rather transforms such a vector to either such a set
or a different vector ‖x′‖p ≥ 2C‖x′‖2, which is a procedure that
eventually converges.

Subexponential time algorithm for small set expansion

At the heart of the sub-exponential time algorithm for small set
expansion is the following result:

5. Theorem (Structure theorem for small set expanders). Suppose
that G is a d regular graph and let A be the matrix corresponding to the
lazy random walk on G (i.e., Ai,i = 1/2 and Ai,j = 1/(2d) for i ∼ j), with
eigenvalues 1 = λ1 ≥ λ2 · · · ≥ λn ≥ 0. If |{i : λi ≥ 1− ε}| ≥ nβ then
there exists a vector x ∈ Rn such that x>Ax ≥ (1−O(ε/β))‖x‖2 and
‖x‖1 ≤ ‖x‖2

√
n1−β/2.

Proof. Let Π be the projector matrix to the span of the eigenvectors of
A corresponding to eigenvalues over 1− ε. Under our assumptions
Tr(Π) ≥ nβ and so in particular there exists i such that e>i Πei =

‖Πei‖2 ≥ nβ−1. Define vj = Ajei to be the vector corresponding to
the probability distribution of taking j steps according to A from
the vertex i. Since the eigenvalues of Aj are simply the eigenvalues
of A raised to the jth power, and ei has at least n1−β norm-squared
projection to the span of eigenvalues of A larger than 1− ε, ‖vj‖2

2 ≥
n1−β(1− ε)j which will be at least n1−β/2 if j ≤ β log n/(3ε). Since vj

is a probability distribution ‖vj‖1 = 1 which means that vj satisfies
the `1 to `2 ratio condition of the conclusion. Hence all that is left
to show is that there is some j ≤ β log n/(3ε) such that v>j Avj ≥
(1−O(ε/β))‖vj‖2. Note that (exercise!) it enough to show this for
A2 instead of A (i.e. that v>j A2vj ≥ (1 − O(ε/β))‖vj‖2) and so,

since Avj = vj+1 it is enough to show that v>j+1vj+1 = ‖vj+1‖2 ≥
(1−O(ε/β))‖vj‖2.

But since ‖v0‖2
2 = 1, if ‖vj+1‖2 ≤ (1− 10ε/β)‖vj‖2 for all such

j, then we would get that ‖vβ log n/(3ε)‖
2 would be less than (1 −

10ε/β)β log n/(3ε) ≤ 1/n2 which is a contradiction as ‖v‖2
2 ≥ 1/n for

every n dimensional vector v with ‖v‖1 = 1.
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Theorem 5 leads to a subexponential time algorithm for sse quite
directly. Given a graph G, if its top eigenspace has dimension at least
nβ then it is not a small set expander by combining Theorem 5 with
the local Cheeger inequality. Otherwise we can do a “brute force
search” in time exp(Õ(nβ)) over this subspace to search for vector
that is (close to) the characteristic vector of a sparse non expand-
ing set. Using the results of “fixing a vector in a subspace” we saw
before, we can also do this via a Õ(nβ) degree sos. Getting a subex-
ponential algorithm for unique games is more involved but uses
the same ideas. Namely we obtain a refined structure theorem that
states that for any graph G, by removing o(1) fraction of the edges
we can decompose G into a collection of disjoint subgraphs each with
(essentially) at most nβ large eigenvalues. See chapter 5 of (Steurer
[2010]) for more details.
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