Notation

Hiding constants

Unless explicitly stated otherwise, $O(\cdot)$ -notation hides absolute multiplicative constants. Concretely, every occurrence of O(x) is a placeholder for some function f(x) that satisfies $\forall x \in \mathbb{R}$. $|f(x)| \leq C|x|$ for some absolute constant C > 0. Similarly, $\Omega(x)$ is a placeholder for a function g(x) that satisfies $\forall x \in \mathbb{R}$. $|g(x)| \geq |x|/C$ for some absolute constant C > 0.

Vectors

All vectors are column vectors unless specified otherwise. In particular, the notation (a, b, c) is short hand for a column vector with entries $a, b, c \in \mathbb{R}$. We denote the coordinate basis of \mathbb{R}^n by $\{e_i\}_{i \in [n]}$. For a vector $v \in \mathbb{R}^n$, we let v^{T} be the corresponding row vector.

Inner products and norms

For vectors $u, v \in \mathbb{R}^n$ with $u = (u_1, ..., u_n)$ and $v = (v_1, ..., v_n)$, we define the inner product of u and v, unless specified otherwise,

$$\langle u, v \rangle = u^{\mathsf{T}} v = \sum_{i=1}^{n} u_i \cdot v_i \,. \tag{1}$$

The (Euclidean) norm of a vector v is $||v|| = \langle v, v \rangle^{1/2}$. For $p \ge 1$, we define the ℓ^p -norm of v,

$$\|v\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{1/p}.$$
(2)

For $p = \infty$, we take the limit, so that

$$||v||_{\infty} = \max_{i \in [n]} |v_i|.$$
 (3)

Kronecker product

For two matrices *A* and *B*, their Kronecker product is the matrix $A \otimes B$ with entries $(A \otimes B)_{ii',jj'} = A_{i,j}B_{i',j'}$. This operation also applies to row and column vectors (viewed as matrices with only one column or one row). We use the notation $A^{\otimes k} = A \otimes \cdots \otimes A$ (*k*-times) for the *k*-fold tensor power of a matrix *A*.

Matrices

For matrices with more than two indices, we separate row and column indices by a comma. For example if *A* is a linear combination of matrices of the form $e_i(e_j \otimes e_k)^T$, we denote the entries of *A* by $A_{i,jk}$. (Note that this convention is consistent with the above notation for Kronecker products.)

Traces

The trace is cyclic, that is, for all matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$,

$$\operatorname{Tr} AB = \operatorname{Tr} BA.$$
 (4)

A consequence of this property is that for $x, y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$,

$$\operatorname{Tr} Axy^{\mathsf{T}} = \operatorname{Tr} y^{\mathsf{T}} Ax = \langle y, Ax \rangle.$$
(5)

Polynomials

Let $\mathbb{R}[x]$ be the set of polynomials with real coefficients in variables $x = (x_1, \ldots, x_n)$. For $d \in \mathbb{N}$, let $\mathbb{R}[x]_{\leq d}$ be the set of polynomials of degree at most d.

References