Notation

Hiding constants

Unless explicitly stated otherwise, $O(\cdot)$-notation hides absolute multiplicative constants. Concretely, every occurrence of $O(x)$ is a placeholder for some function $f(x)$ that satisfies $\forall x \in \mathbb{R} .|f(x)| \leq C|x|$ for some absolute constant $C>0$. Similarly, $\Omega(x)$ is a placeholder for a function $g(x)$ that satisfies $\forall x \in \mathbb{R} .|g(x)| \geq|x| / C$ for some absolute constant $C>0$.

Vectors

All vectors are column vectors unless specified otherwise. In particular, the notation (a, b, c) is short hand for a column vector with entries $a, b, c \in \mathbb{R}$,. We denote the coordinate basis of \mathbb{R}^{n} by $\left\{e_{i}\right\}_{i \in[n]}$. For a vector $v \in \mathbb{R}^{n}$, we let v^{\top} be the corresponding row vector.

Inner products and norms

For vectors $u, v \in \mathbb{R}^{n}$ with $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$, we define the inner product of u and v, unless specified otherwise,

$$
\begin{equation*}
\langle u, v\rangle=u^{\top} v=\sum_{i=1}^{n} u_{i} \cdot v_{i} . \tag{1}
\end{equation*}
$$

The (Euclidean) norm of a vector v is $\|v\|=\langle v, v\rangle^{1 / 2}$. For $p \geq 1$, we define the ℓ^{p}-norm of v,

$$
\begin{equation*}
\|v\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p} . \tag{2}
\end{equation*}
$$

For $p=\infty$, we take the limit, so that

$$
\begin{equation*}
\|v\|_{\infty}=\max _{i \in[n]}\left|v_{i}\right| . \tag{3}
\end{equation*}
$$

Kronecker product

For two matrices A and B, their Kronecker product is the matrix $\mathrm{A} \otimes B$ with entries $(A \otimes B)_{i i^{\prime}, j j^{\prime}}=A_{i, j} B_{i^{\prime}, j^{\prime}}$. This operation also applies to row and column vectors (viewed as matrices with only one column or one row). We use the notation $A^{\otimes k}=A \otimes \cdots \otimes A$ (k-times) for the k-fold tensor power of a matrix A.

Matrices

For matrices with more than two indices, we separate row and column indices by a comma. For example if A is a linear combination of matrices of the form $e_{i}\left(e_{j} \otimes e_{k}\right)^{\top}$, we denote the entries of A by $A_{i, j k}$. (Note that this convention is consistent with the above notation for Kronecker products.)

Traces

The trace is cyclic, that is, for all matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$,

$$
\begin{equation*}
\operatorname{Tr} A B=\operatorname{Tr} B A \tag{4}
\end{equation*}
$$

A consequence of this property is that for $x, y \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$,

$$
\begin{equation*}
\operatorname{Tr} A x y^{\top}=\operatorname{Tr} y^{\top} A x=\langle y, A x\rangle . \tag{5}
\end{equation*}
$$

Polynomials

Let $\mathbb{R}[x]$ be the set of polynomials with real coefficients in variables $x=\left(x_{1}, \ldots, x_{n}\right)$. For $d \in \mathbb{N}$, let $\mathbb{R}[x]_{\leq d}$ be the set of polynomials of degree at most d.

References

